Finite-time stabilization and H∞ control of Port-controlled Hamiltonian systems with disturbances and saturation.
The finite-time stabilization and finite-time H∞ control problems of Port-controlled Hamiltonian (PCH) systems with disturbances and input saturation (IS) are studied in this paper. First, by designing an appropriate output feedback, a strictly dissipative PCH system is obtained and finite-time stab...
Guardado en:
Autores principales: | , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/bd594cfda4f44d0598f670f5c9e24683 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | The finite-time stabilization and finite-time H∞ control problems of Port-controlled Hamiltonian (PCH) systems with disturbances and input saturation (IS) are studied in this paper. First, by designing an appropriate output feedback, a strictly dissipative PCH system is obtained and finite-time stabilization result for nominal system is given. Second, with the help of the Hamilton function method and truncation inequality technique, a novel output feedback controller is developed to make the PCH system finite-time stable when IS occurs. Further, a finite-time H∞ controller is designed to attenuate disturbances for PCH systems with IS, and sufficient conditions are presented. Finally, a numerical example and a circuit example are given to reveal the feasibility of the obtained theoretical results. |
---|