Stepwise Covariance-Free Common Principal Components (CF-CPC) With an Application to Neuroscience

Finding the common principal component (CPC) for ultra-high dimensional data is a multivariate technique used to discover the latent structure of covariance matrices of shared variables measured in two or more k conditions. Common eigenvectors are assumed for the covariance matrix of all conditions,...

Description complète

Enregistré dans:
Détails bibliographiques
Auteurs principaux: Usama Riaz, Fuleah A. Razzaq, Shiang Hu, Pedro A. Valdés-Sosa
Format: article
Langue:EN
Publié: Frontiers Media S.A. 2021
Sujets:
EEG
MEG
Accès en ligne:https://doaj.org/article/bdc035ecc71047b39a5c6301c4f74fc2
Tags: Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!