Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data

In many machine learning applications, one uses pre-trained neural networks, having limited access to training and test data. Martin et al. show how to predict trends in the quality of such neural networks without access to this information, relevant for reproducibility, diagnostics, and validation.

Enregistré dans:
Détails bibliographiques
Auteurs principaux: Charles H. Martin, Tongsu (Serena) Peng, Michael W. Mahoney
Format: article
Langue:EN
Publié: Nature Portfolio 2021
Sujets:
Q
Accès en ligne:https://doaj.org/article/bdc9afbd811d47888c4645cf78e0b595
Tags: Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!