Effect of temperature on the metabolism, behaviour and oxygen requirements of Sparus aurata

We investigated the effect of temperature on the limiting oxygen saturation (LOS) of gilthead sea bream Sparus aurata. This threshold was defined as the % O2 saturation where fish no longer upheld their routine metabolic rate (RMR, the metabolic rate of fed and active fish) during a progressive decl...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: M Remen, MAJ Nederlof, O Folkedal, G Thorsheim, A Sitjà-Bobadilla, J Pérez-Sánchez, F Oppedal, RE Olsen
Formato: article
Lenguaje:EN
Publicado: Inter-Research 2015
Materias:
Acceso en línea:https://doaj.org/article/beac86c36fcc4d739b5adcf37fd7f8eb
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:We investigated the effect of temperature on the limiting oxygen saturation (LOS) of gilthead sea bream Sparus aurata. This threshold was defined as the % O2 saturation where fish no longer upheld their routine metabolic rate (RMR, the metabolic rate of fed and active fish) during a progressive decline in oxygen saturation. S. aurata (398 ± 10 g, mean ± SE) were kept in 3 replicate tanks and subjected to 3 changes in temperature: 16 to 20°C, 20 to 16°C and 16 to 12°C. At each temperature, fish were left to acclimatize for 8 to 10 d, before daily feed intake (DFI), the routine oxygen consumption rate (routine MO2, mg kg-1 min-1) and the LOS were measured. In addition, at 20°C the swimming speed was measured in fish subjected to a decline in O2 from full air saturation to levels below the LOS (minimum of 8-10% O2). For the temperature range tested (12-20°C), DFI, MO2 and LOS increased exponentially with temperature (7.5-, 3.6- and 2.2-fold, respectively) with mean (± SE) LOS being 17 ± 1, 21 ± 0 and 35 ± 5% O2 at 12, 16 and 20°C, respectively. A gradual decline in swimming activity was observed as O2 declined below the LOS, indicating increasing metabolic stress and/or a ‘sit-out’ coping strategy which may prolong survival time in severe hypoxia. The results show the importance of temperature as an influential variable over the environmental O2 requirements of S. aurata.