Neuromorphic computing with multi-memristive synapses
Memristive technology is a promising avenue towards realizing efficient non-von Neumann neuromorphic hardware. Boybat et al. proposes a multi-memristive synaptic architecture with a counter-based global arbitration scheme to address challenges associated with the non-ideal memristive device behavior...
Enregistré dans:
Auteurs principaux: | Irem Boybat, Manuel Le Gallo, S. R. Nandakumar, Timoleon Moraitis, Thomas Parnell, Tomas Tuma, Bipin Rajendran, Yusuf Leblebici, Abu Sebastian, Evangelos Eleftheriou |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2018
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/beb0eab547c74bc38fb3bf5a3f89b8e7 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Graphene memristive synapses for high precision neuromorphic computing
par: Thomas F. Schranghamer, et autres
Publié: (2020) -
Accurate deep neural network inference using computational phase-change memory
par: Vinay Joshi, et autres
Publié: (2020) -
Evidence of soft bound behaviour in analogue memristive devices for neuromorphic computing
par: Jacopo Frascaroli, et autres
Publié: (2018) -
Temporal correlation detection using computational phase-change memory
par: Abu Sebastian, et autres
Publié: (2017) -
Pavlovian conditioning demonstrated with neuromorphic memristive devices
par: Zheng-Hua Tan, et autres
Publié: (2017)