Friction on Ice: How Temperature, Pressure, and Speed Control the Slipperiness of Ice
We present sphere-on-ice friction experiments as a function of temperature, contact pressure, and speed. At temperatures well below the melting point, friction is strongly temperature dependent and follows an Arrhenius behavior, which we interpret as resulting from the thermally activated diffusive...
Guardado en:
Autores principales: | , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
American Physical Society
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/bf91d9d985d449b69364697e6d801dad |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:bf91d9d985d449b69364697e6d801dad |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:bf91d9d985d449b69364697e6d801dad2021-12-02T14:33:46ZFriction on Ice: How Temperature, Pressure, and Speed Control the Slipperiness of Ice10.1103/PhysRevX.11.0110252160-3308https://doaj.org/article/bf91d9d985d449b69364697e6d801dad2021-02-01T00:00:00Zhttp://doi.org/10.1103/PhysRevX.11.011025http://doi.org/10.1103/PhysRevX.11.011025https://doaj.org/toc/2160-3308We present sphere-on-ice friction experiments as a function of temperature, contact pressure, and speed. At temperatures well below the melting point, friction is strongly temperature dependent and follows an Arrhenius behavior, which we interpret as resulting from the thermally activated diffusive motion of surface ice molecules. We find that this motion is hindered when the contact pressure is increased; in this case, the friction increases exponentially, and the slipperiness of the ice disappears. Close to the melting point, the ice surface is plastically deformed due to the pressure exerted by the slider, a process depending on the slider geometry and penetration hardness of the ice. The ice penetration hardness is shown to increase approximately linearly with decreasing temperature and sublinearly with indentation speed. We show that the latter results in a nonmonotonic dependence of the ploughing force on sliding speed. Our results thus clarify the complex dependence of ice friction on temperature, contact pressure, and speed.Rinse W. LiefferinkFeng-Chun HsiaBart WeberDaniel BonnAmerican Physical SocietyarticlePhysicsQC1-999ENPhysical Review X, Vol 11, Iss 1, p 011025 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Physics QC1-999 |
spellingShingle |
Physics QC1-999 Rinse W. Liefferink Feng-Chun Hsia Bart Weber Daniel Bonn Friction on Ice: How Temperature, Pressure, and Speed Control the Slipperiness of Ice |
description |
We present sphere-on-ice friction experiments as a function of temperature, contact pressure, and speed. At temperatures well below the melting point, friction is strongly temperature dependent and follows an Arrhenius behavior, which we interpret as resulting from the thermally activated diffusive motion of surface ice molecules. We find that this motion is hindered when the contact pressure is increased; in this case, the friction increases exponentially, and the slipperiness of the ice disappears. Close to the melting point, the ice surface is plastically deformed due to the pressure exerted by the slider, a process depending on the slider geometry and penetration hardness of the ice. The ice penetration hardness is shown to increase approximately linearly with decreasing temperature and sublinearly with indentation speed. We show that the latter results in a nonmonotonic dependence of the ploughing force on sliding speed. Our results thus clarify the complex dependence of ice friction on temperature, contact pressure, and speed. |
format |
article |
author |
Rinse W. Liefferink Feng-Chun Hsia Bart Weber Daniel Bonn |
author_facet |
Rinse W. Liefferink Feng-Chun Hsia Bart Weber Daniel Bonn |
author_sort |
Rinse W. Liefferink |
title |
Friction on Ice: How Temperature, Pressure, and Speed Control the Slipperiness of Ice |
title_short |
Friction on Ice: How Temperature, Pressure, and Speed Control the Slipperiness of Ice |
title_full |
Friction on Ice: How Temperature, Pressure, and Speed Control the Slipperiness of Ice |
title_fullStr |
Friction on Ice: How Temperature, Pressure, and Speed Control the Slipperiness of Ice |
title_full_unstemmed |
Friction on Ice: How Temperature, Pressure, and Speed Control the Slipperiness of Ice |
title_sort |
friction on ice: how temperature, pressure, and speed control the slipperiness of ice |
publisher |
American Physical Society |
publishDate |
2021 |
url |
https://doaj.org/article/bf91d9d985d449b69364697e6d801dad |
work_keys_str_mv |
AT rinsewliefferink frictiononicehowtemperaturepressureandspeedcontroltheslipperinessofice AT fengchunhsia frictiononicehowtemperaturepressureandspeedcontroltheslipperinessofice AT bartweber frictiononicehowtemperaturepressureandspeedcontroltheslipperinessofice AT danielbonn frictiononicehowtemperaturepressureandspeedcontroltheslipperinessofice |
_version_ |
1718391155844972544 |