Exploring use of unsupervised clustering to associate signaling profiles of GPCR ligands to clinical response
Identifying ligands which activate the specific effectors driving particular in vivo drug effects remains challenging. Here, the authors apply unsupervised clustering of pharmacodynamic parameters to classify GPCR ligands into different categories with similar signaling profiles and shared frequency...
Enregistré dans:
Auteurs principaux: | Besma Benredjem, Jonathan Gallion, Dennis Pelletier, Paul Dallaire, Johanie Charbonneau, Darren Cawkill, Karim Nagi, Mark Gosink, Viktoryia Lukasheva, Stephen Jenkinson, Yong Ren, Christopher Somps, Brigitte Murat, Emma Van Der Westhuizen, Christian Le Gouill, Olivier Lichtarge, Anne Schmidt, Michel Bouvier, Graciela Pineyro |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2019
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/c0db3f1cf110426bbd5f35d40fd3681b |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Author Correction: Exploring use of unsupervised clustering to associate signaling profiles of GPCR ligands to clinical response
par: Besma Benredjem, et autres
Publié: (2020) -
Evolutionary action and structural basis of the allosteric switch controlling β2AR functional selectivity
par: Anne-Marie Schönegge, et autres
Publié: (2017) -
Spatiotemporal regulation of the GPCR activity of BAI3 by C1qL4 and Stabilin-2 controls myoblast fusion
par: Noumeira Hamoud, et autres
Publié: (2018) -
GPCR_LigandClassify.py; a rigorous machine learning classifier for GPCR targeting compounds
par: Marawan Ahmed, et autres
Publié: (2021) -
Improved GPCR ligands from nanobody tethering
par: Ross W. Cheloha, et autres
Publié: (2020)