Comparing feedforward and recurrent neural network architectures with human behavior in artificial grammar learning

Abstract In recent years artificial neural networks achieved performance close to or better than humans in several domains: tasks that were previously human prerogatives, such as language processing, have witnessed remarkable improvements in state of the art models. One advantage of this technologic...

Description complète

Enregistré dans:
Détails bibliographiques
Auteurs principaux: Andrea Alamia, Victor Gauducheau, Dimitri Paisios, Rufin VanRullen
Format: article
Langue:EN
Publié: Nature Portfolio 2020
Sujets:
R
Q
Accès en ligne:https://doaj.org/article/c2575fa6d2e64527acdf99f9febf6d42
Tags: Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!