Comparing feedforward and recurrent neural network architectures with human behavior in artificial grammar learning
Abstract In recent years artificial neural networks achieved performance close to or better than humans in several domains: tasks that were previously human prerogatives, such as language processing, have witnessed remarkable improvements in state of the art models. One advantage of this technologic...
Guardado en:
Autores principales: | Andrea Alamia, Victor Gauducheau, Dimitri Paisios, Rufin VanRullen |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/c2575fa6d2e64527acdf99f9febf6d42 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Leakage detection in water distribution networks using hybrid feedforward artificial neural networks
por: Hamideh Fallahi, et al.
Publicado: (2021) -
Transcranial magnetic stimulation reveals attentional feedback to area V1 during serial visual search.
por: Laura Dugué, et al.
Publicado: (2011) -
Masking Feedforward Neural Networks Against Power Analysis Attacks
por: Athanasiou Konstantinos, et al.
Publicado: (2022) -
The measurement, evolution, and neural representation of action grammars of human behavior
por: Dietrich Stout, et al.
Publicado: (2021) -
Optimized algorithm for multipoint geostatistical facies modeling based on a deep feedforward neural network.
por: Jianpeng Yao, et al.
Publicado: (2021)