Comparing feedforward and recurrent neural network architectures with human behavior in artificial grammar learning

Abstract In recent years artificial neural networks achieved performance close to or better than humans in several domains: tasks that were previously human prerogatives, such as language processing, have witnessed remarkable improvements in state of the art models. One advantage of this technologic...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Andrea Alamia, Victor Gauducheau, Dimitri Paisios, Rufin VanRullen
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2020
Materias:
R
Q
Acceso en línea:https://doaj.org/article/c2575fa6d2e64527acdf99f9febf6d42
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!