A comparative study of SIR Model, Linear Regression, Logistic Function and ARIMA Model for forecasting COVID-19 cases
Starting February 2020, COVID-19 was confirmed in 11,946 people worldwide, with a mortality rate of almost 2%. A significant number of epidemic diseases consisting of human Coronavirus display patterns. In this study, with the benefit of data analytic, we develop regression models and a Susceptible-...
Guardado en:
Autores principales: | Saina Abolmaali, Samira Shirzaei |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
AIMS Press
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/c2bd7a78b6c14fdda5fe7006aa92f4b2 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Forecasting COVID-19 pandemic in Alberta, Canada using modified ARIMA models
por: Jian Sun, PhD
Publicado: (2021) -
Stacking Ensemble Methodology Using Deep Learning and ARIMA Models for Short-Term Load Forecasting
por: Pedro M. R. Bento, et al.
Publicado: (2021) -
SPI-Based Hybrid Hidden Markov–GA, ARIMA–GA, and ARIMA–GA–ANN Models for Meteorological Drought Forecasting
por: Mohammed Alquraish, et al.
Publicado: (2021) -
FORECASTING SAVING DEPOSIT IN MALAYSIAN ISLAMIC BANKING: COMPARISON BETWEEN ARTIFICIAL NEURAL NETWORK AND ARIMA
por: Raditya Sukmana, et al.
Publicado: (2014) -
Predicting 15-day unplanned readmissions in hospitalization departments: an application of logistic regression
por: Ortiz-Barrios,Miguel, et al.
Publicado: (2021)