A comparative study of SIR Model, Linear Regression, Logistic Function and ARIMA Model for forecasting COVID-19 cases
Starting February 2020, COVID-19 was confirmed in 11,946 people worldwide, with a mortality rate of almost 2%. A significant number of epidemic diseases consisting of human Coronavirus display patterns. In this study, with the benefit of data analytic, we develop regression models and a Susceptible-...
Enregistré dans:
Auteurs principaux: | Saina Abolmaali, Samira Shirzaei |
---|---|
Format: | article |
Langue: | EN |
Publié: |
AIMS Press
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/c2bd7a78b6c14fdda5fe7006aa92f4b2 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Forecasting COVID-19 pandemic in Alberta, Canada using modified ARIMA models
par: Jian Sun, PhD
Publié: (2021) -
Stacking Ensemble Methodology Using Deep Learning and ARIMA Models for Short-Term Load Forecasting
par: Pedro M. R. Bento, et autres
Publié: (2021) -
SPI-Based Hybrid Hidden Markov–GA, ARIMA–GA, and ARIMA–GA–ANN Models for Meteorological Drought Forecasting
par: Mohammed Alquraish, et autres
Publié: (2021) -
FORECASTING SAVING DEPOSIT IN MALAYSIAN ISLAMIC BANKING: COMPARISON BETWEEN ARTIFICIAL NEURAL NETWORK AND ARIMA
par: Raditya Sukmana, et autres
Publié: (2014) -
Predicting 15-day unplanned readmissions in hospitalization departments: an application of logistic regression
par: Ortiz-Barrios,Miguel, et autres
Publié: (2021)