An entropy-based metric for assessing the purity of single cell populations

Single cell RNA-seq is a powerful method to assign cell identity, but the purity of cell clusters arising from this data is not clear. Here the authors present an entropy-based statistic called ROGUE to quantify the purity of cell clusters, and identify subtypes within clusters.

Guardado en:
Detalles Bibliográficos
Autores principales: Baolin Liu, Chenwei Li, Ziyi Li, Dongfang Wang, Xianwen Ren, Zemin Zhang
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2020
Materias:
Q
Acceso en línea:https://doaj.org/article/c2ec1f439bfd4b2a981eb0a38bcf1f51
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:c2ec1f439bfd4b2a981eb0a38bcf1f51
record_format dspace
spelling oai:doaj.org-article:c2ec1f439bfd4b2a981eb0a38bcf1f512021-12-02T17:14:22ZAn entropy-based metric for assessing the purity of single cell populations10.1038/s41467-020-16904-32041-1723https://doaj.org/article/c2ec1f439bfd4b2a981eb0a38bcf1f512020-06-01T00:00:00Zhttps://doi.org/10.1038/s41467-020-16904-3https://doaj.org/toc/2041-1723Single cell RNA-seq is a powerful method to assign cell identity, but the purity of cell clusters arising from this data is not clear. Here the authors present an entropy-based statistic called ROGUE to quantify the purity of cell clusters, and identify subtypes within clusters.Baolin LiuChenwei LiZiyi LiDongfang WangXianwen RenZemin ZhangNature PortfolioarticleScienceQENNature Communications, Vol 11, Iss 1, Pp 1-13 (2020)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Baolin Liu
Chenwei Li
Ziyi Li
Dongfang Wang
Xianwen Ren
Zemin Zhang
An entropy-based metric for assessing the purity of single cell populations
description Single cell RNA-seq is a powerful method to assign cell identity, but the purity of cell clusters arising from this data is not clear. Here the authors present an entropy-based statistic called ROGUE to quantify the purity of cell clusters, and identify subtypes within clusters.
format article
author Baolin Liu
Chenwei Li
Ziyi Li
Dongfang Wang
Xianwen Ren
Zemin Zhang
author_facet Baolin Liu
Chenwei Li
Ziyi Li
Dongfang Wang
Xianwen Ren
Zemin Zhang
author_sort Baolin Liu
title An entropy-based metric for assessing the purity of single cell populations
title_short An entropy-based metric for assessing the purity of single cell populations
title_full An entropy-based metric for assessing the purity of single cell populations
title_fullStr An entropy-based metric for assessing the purity of single cell populations
title_full_unstemmed An entropy-based metric for assessing the purity of single cell populations
title_sort entropy-based metric for assessing the purity of single cell populations
publisher Nature Portfolio
publishDate 2020
url https://doaj.org/article/c2ec1f439bfd4b2a981eb0a38bcf1f51
work_keys_str_mv AT baolinliu anentropybasedmetricforassessingthepurityofsinglecellpopulations
AT chenweili anentropybasedmetricforassessingthepurityofsinglecellpopulations
AT ziyili anentropybasedmetricforassessingthepurityofsinglecellpopulations
AT dongfangwang anentropybasedmetricforassessingthepurityofsinglecellpopulations
AT xianwenren anentropybasedmetricforassessingthepurityofsinglecellpopulations
AT zeminzhang anentropybasedmetricforassessingthepurityofsinglecellpopulations
AT baolinliu entropybasedmetricforassessingthepurityofsinglecellpopulations
AT chenweili entropybasedmetricforassessingthepurityofsinglecellpopulations
AT ziyili entropybasedmetricforassessingthepurityofsinglecellpopulations
AT dongfangwang entropybasedmetricforassessingthepurityofsinglecellpopulations
AT xianwenren entropybasedmetricforassessingthepurityofsinglecellpopulations
AT zeminzhang entropybasedmetricforassessingthepurityofsinglecellpopulations
_version_ 1718381343671320576