Shannon entropy for Feinberg–Horodecki equation and thermal properties of improved Wei potential model
We solved a one-dimensional time-dependent Feinberg–Horodecki equation for an improved Wei molecular energy potential function using the parametric Nikiforov–Uvarov method. The quantized momentum and the corresponding wave functions were obtained. With the help of the wave functions obtained, we cal...
Enregistré dans:
Auteurs principaux: | Onate Clement Atachegbe, Onyeaju Michael Chukwudi, Okon Ituen Bassey |
---|---|
Format: | article |
Langue: | EN |
Publié: |
De Gruyter
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/c388f88811e845e8b367da465b3c3c57 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Eigensolution to Morse potential for Scandium and Nitrogen monoiodides
par: C. A Onate, et autres
Publié: (2021) -
Fractional calculus, zeta functions and Shannon entropy
par: Guariglia Emanuel
Publié: (2021) -
Note on theoretical and practical solvability of a class of discrete equations generalizing the hyperbolic-cotangent class
par: Stevo Stević, et autres
Publié: (2021) -
New insight into prediction of phase behavior of natural gas hydrate by different cubic equations of state coupled with various mixing rules
par: Amir Hossein Saeedi Dehaghani
Publié: (2017) -
Oscillation of third-order neutral damped differential equations
par: Miroslav Bartusek
Publié: (2021)