Preparation of catechin extracts and nanoemulsions from green tea leaf waste and their inhibition effect on prostate cancer cell PC-3

Yin-Jieh Tsai, Bing-Huei ChenDepartment of Food Science, Fu Jen Catholic University, New Taipei City, Taiwan, Republic of China Abstract: Green tea is one of the most commonly consumed natural health beverages in Taiwan’s market, with the major functional component catechin being shown to...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Tsai YJ, Chen BH
Formato: article
Lenguaje:EN
Publicado: Dove Medical Press 2016
Materias:
Acceso en línea:https://doaj.org/article/c4978d9ba4584a9285b063879220e99f
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:c4978d9ba4584a9285b063879220e99f
record_format dspace
spelling oai:doaj.org-article:c4978d9ba4584a9285b063879220e99f2021-12-02T03:58:28ZPreparation of catechin extracts and nanoemulsions from green tea leaf waste and their inhibition effect on prostate cancer cell PC-31178-2013https://doaj.org/article/c4978d9ba4584a9285b063879220e99f2016-05-01T00:00:00Zhttps://www.dovepress.com/preparation-of-catechin-extracts-and-nanoemulsions-from-green-tea-leaf-peer-reviewed-article-IJNhttps://doaj.org/toc/1178-2013Yin-Jieh Tsai, Bing-Huei ChenDepartment of Food Science, Fu Jen Catholic University, New Taipei City, Taiwan, Republic of China Abstract: Green tea is one of the most commonly consumed natural health beverages in Taiwan’s market, with the major functional component catechin being shown to possess several biological activities such as antioxidation, anticancer, and prevention of cardiovascular disease. The objectives of this study were to develop a high-performance liquid chromatography–mass spectrometry method to determine the variety and content of catechins in green tea leaf waste, a by-product obtained during processing of tea beverage. In addition, catechin nanoemulsion was prepared to study its inhibition effect on prostate cancer cell PC-3. Results showed that a total of eight catechin standards were separated within 25 minutes by using a Gemini C18 column and a gradient mobile phase of 0.1% formic acid (A) and acetonitrile (B) with flow rate at 1 mL/min, column temperature at 30°C, and detection wavelength at 280 nm. Among various extraction solvents, 50% ethanol generated the highest yield of total catechins from tea leaf waste, of which five catechins were identified and quantified. The catechin nanoemulsion was composed of catechin extract, lecithin, Tween 80, and deionized water in an appropriate proportion, with the mean particle size being 11.45 nm, encapsulation efficiency 88.1%, and zeta potential -66.3 mV. A high stability of catechin nanoemulsion was shown over a storage period of 120 days at 4°C. Both catechin extract and nanoemulsion could inhibit growth of PC-3 tumor cells, with the half maximal inhibitory concentration being 15.4 µg/mL and 8.5 µg/mL, respectively. The PC-3 cell cycle was arrested at S phase through elevation of P27 expression and decline of cyclin A, cyclin B, cyclin-dependent kinase 2, and cyclin-dependent kinase 1 expression. In addition, both catechin extract and nanoemulsion could induce apoptosis of PC-3 cells through decrease in B-cell lymphoma 2 (bcl-2) expression and increase in cytochrome c expression for activation of caspase-3, caspase-8, and caspase-9. Taken together, both caspase-dependent and caspase-independent pathways may be involved in apoptosis of PC-3 cells. Keywords: green tea leaf waste, HPLC-MS, catechin nanoemulsion, prostate cancer cell PC-3, apoptosisTsai YJChen BHDove Medical Pressarticlegreen tea leave wastesHPLC-MScatechin nanoemulsionprostate cancer cell PC-3apoptosisMedicine (General)R5-920ENInternational Journal of Nanomedicine, Vol 2016, Iss default, Pp 1907-1926 (2016)
institution DOAJ
collection DOAJ
language EN
topic green tea leave wastes
HPLC-MS
catechin nanoemulsion
prostate cancer cell PC-3
apoptosis
Medicine (General)
R5-920
spellingShingle green tea leave wastes
HPLC-MS
catechin nanoemulsion
prostate cancer cell PC-3
apoptosis
Medicine (General)
R5-920
Tsai YJ
Chen BH
Preparation of catechin extracts and nanoemulsions from green tea leaf waste and their inhibition effect on prostate cancer cell PC-3
description Yin-Jieh Tsai, Bing-Huei ChenDepartment of Food Science, Fu Jen Catholic University, New Taipei City, Taiwan, Republic of China Abstract: Green tea is one of the most commonly consumed natural health beverages in Taiwan’s market, with the major functional component catechin being shown to possess several biological activities such as antioxidation, anticancer, and prevention of cardiovascular disease. The objectives of this study were to develop a high-performance liquid chromatography–mass spectrometry method to determine the variety and content of catechins in green tea leaf waste, a by-product obtained during processing of tea beverage. In addition, catechin nanoemulsion was prepared to study its inhibition effect on prostate cancer cell PC-3. Results showed that a total of eight catechin standards were separated within 25 minutes by using a Gemini C18 column and a gradient mobile phase of 0.1% formic acid (A) and acetonitrile (B) with flow rate at 1 mL/min, column temperature at 30°C, and detection wavelength at 280 nm. Among various extraction solvents, 50% ethanol generated the highest yield of total catechins from tea leaf waste, of which five catechins were identified and quantified. The catechin nanoemulsion was composed of catechin extract, lecithin, Tween 80, and deionized water in an appropriate proportion, with the mean particle size being 11.45 nm, encapsulation efficiency 88.1%, and zeta potential -66.3 mV. A high stability of catechin nanoemulsion was shown over a storage period of 120 days at 4°C. Both catechin extract and nanoemulsion could inhibit growth of PC-3 tumor cells, with the half maximal inhibitory concentration being 15.4 µg/mL and 8.5 µg/mL, respectively. The PC-3 cell cycle was arrested at S phase through elevation of P27 expression and decline of cyclin A, cyclin B, cyclin-dependent kinase 2, and cyclin-dependent kinase 1 expression. In addition, both catechin extract and nanoemulsion could induce apoptosis of PC-3 cells through decrease in B-cell lymphoma 2 (bcl-2) expression and increase in cytochrome c expression for activation of caspase-3, caspase-8, and caspase-9. Taken together, both caspase-dependent and caspase-independent pathways may be involved in apoptosis of PC-3 cells. Keywords: green tea leaf waste, HPLC-MS, catechin nanoemulsion, prostate cancer cell PC-3, apoptosis
format article
author Tsai YJ
Chen BH
author_facet Tsai YJ
Chen BH
author_sort Tsai YJ
title Preparation of catechin extracts and nanoemulsions from green tea leaf waste and their inhibition effect on prostate cancer cell PC-3
title_short Preparation of catechin extracts and nanoemulsions from green tea leaf waste and their inhibition effect on prostate cancer cell PC-3
title_full Preparation of catechin extracts and nanoemulsions from green tea leaf waste and their inhibition effect on prostate cancer cell PC-3
title_fullStr Preparation of catechin extracts and nanoemulsions from green tea leaf waste and their inhibition effect on prostate cancer cell PC-3
title_full_unstemmed Preparation of catechin extracts and nanoemulsions from green tea leaf waste and their inhibition effect on prostate cancer cell PC-3
title_sort preparation of catechin extracts and nanoemulsions from green tea leaf waste and their inhibition effect on prostate cancer cell pc-3
publisher Dove Medical Press
publishDate 2016
url https://doaj.org/article/c4978d9ba4584a9285b063879220e99f
work_keys_str_mv AT tsaiyj preparationofcatechinextractsandnanoemulsionsfromgreentealeafwasteandtheirinhibitioneffectonprostatecancercellpc3
AT chenbh preparationofcatechinextractsandnanoemulsionsfromgreentealeafwasteandtheirinhibitioneffectonprostatecancercellpc3
_version_ 1718401515395219456