Semantic focusing allows fully automated single-layer slide scanning of cervical cytology slides.
Liquid-based cytology (LBC) in conjunction with Whole-Slide Imaging (WSI) enables the objective and sensitive and quantitative evaluation of biomarkers in cytology. However, the complex three-dimensional distribution of cells on LBC slides requires manual focusing, long scanning-times, and multi-lay...
Enregistré dans:
Auteurs principaux: | Bernd Lahrmann, Nektarios A Valous, Urs Eisenmann, Nicolas Wentzensen, Niels Grabe |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Public Library of Science (PLoS)
2013
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/c4cdf36abfa54b27a2f4d2c8dca2c87d |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Robust whole slide image analysis for cervical cancer screening using deep learning
par: Shenghua Cheng, et autres
Publié: (2021) -
Sliding of coherent twin boundaries
par: Zhang-Jie Wang, et autres
Publié: (2017) -
NECScanNet: Novel Method for Cervical Neuroendocrine Cancer Screening from Whole Slide Images
par: Xin Liao, et autres
Publié: (2021) -
Fully automated preoperative segmentation of temporal bone structures from clinical CT scans
par: C. A. Neves, et autres
Publié: (2021) -
Scaling theory of rubber sliding friction
par: Reinhard Hentschke, et autres
Publié: (2021)