A PCC-Ensemble-TCN model for wind turbine icing detection using class-imbalanced and label-missing SCADA data
Blade icing problems are ubiquitous for wind turbines located in cold climate zones. Data-driven indirect icing detection methods based on supervisory control and data acquisition system have shown strong potential recently. However, the supervisory control and data acquisition data is annotated thr...
Enregistré dans:
Auteurs principaux: | Shenyi Ding, Zhijie Wang, Jue Zhang, Fang Han, Xiaochun Gu, Guangxiao Song |
---|---|
Format: | article |
Langue: | EN |
Publié: |
SAGE Publishing
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/c51852bee0c64b43b7cb1b64a10bd6f7 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
SCADA Data-Based Working Condition Classification for Condition Assessment of Wind Turbine Main Transmission System
par: Huanguo Chen, et autres
Publié: (2021) -
Investigation of the Aerodynamic Characteristics of a Small Horizontal Wind Turbine Blade with Open-Source Software Using Advanced Turbulence Modelling
par: Thomas Nikou, et autres
Publié: (2021) -
Different hybrid machine intelligence techniques for handling IoT‐based imbalanced data
par: Gaurav Mohindru, et autres
Publié: (2021) -
Analisis Quality Of Service Jaringan Load Balancing Menggunakan Metode PCC Dan NTH
par: Zawiyah Saharuna, et autres
Publié: (2020) -
Effects of Damaged Rotor on Wake Dynamics of Vertical Axis Wind Turbines
par: Taimoor Asim, et autres
Publié: (2021)