Graph embedding and unsupervised learning predict genomic sub-compartments from HiC chromatin interaction data
Accurate identification of sub-compartments from chromatin interaction data remains a challenge. Here, the authors introduce an algorithm combining graph embedding and unsupervised learning to predict sub-compartments using Hi-C data.
Guardado en:
Autores principales: | , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/c528a5276a3e4bc18703af1d3cef5bed |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | Accurate identification of sub-compartments from chromatin interaction data remains a challenge. Here, the authors introduce an algorithm combining graph embedding and unsupervised learning to predict sub-compartments using Hi-C data. |
---|