Graph embedding and unsupervised learning predict genomic sub-compartments from HiC chromatin interaction data

Accurate identification of sub-compartments from chromatin interaction data remains a challenge. Here, the authors introduce an algorithm combining graph embedding and unsupervised learning to predict sub-compartments using Hi-C data.

Guardado en:
Detalles Bibliográficos
Autores principales: Haitham Ashoor, Xiaowen Chen, Wojciech Rosikiewicz, Jiahui Wang, Albert Cheng, Ping Wang, Yijun Ruan, Sheng Li
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2020
Materias:
Q
Acceso en línea:https://doaj.org/article/c528a5276a3e4bc18703af1d3cef5bed
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Accurate identification of sub-compartments from chromatin interaction data remains a challenge. Here, the authors introduce an algorithm combining graph embedding and unsupervised learning to predict sub-compartments using Hi-C data.