Graph embedding and unsupervised learning predict genomic sub-compartments from HiC chromatin interaction data
Accurate identification of sub-compartments from chromatin interaction data remains a challenge. Here, the authors introduce an algorithm combining graph embedding and unsupervised learning to predict sub-compartments using Hi-C data.
Guardado en:
Autores principales: | Haitham Ashoor, Xiaowen Chen, Wojciech Rosikiewicz, Jiahui Wang, Albert Cheng, Ping Wang, Yijun Ruan, Sheng Li |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/c528a5276a3e4bc18703af1d3cef5bed |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
HiC-DC+ enables systematic 3D interaction calls and differential analysis for Hi-C and HiChIP
por: Merve Sahin, et al.
Publicado: (2021) -
Capturing cell type-specific chromatin compartment patterns by applying topic modeling to single-cell Hi-C data.
por: Hyeon-Jin Kim, et al.
Publicado: (2020) -
Graph Regularized Deep Sparse Representation for Unsupervised Anomaly Detection
por: Shicheng Li, et al.
Publicado: (2021) -
Identification of significant chromatin contacts from HiChIP data by FitHiChIP
por: Sourya Bhattacharyya, et al.
Publicado: (2019) -
Graph dynamical networks for unsupervised learning of atomic scale dynamics in materials
por: Tian Xie, et al.
Publicado: (2019)