Machine-learning reprogrammable metasurface imager

Conventional imagers require time-consuming data acquisition, or complicated reconstruction algorithms for data post-processing. Here, the authors demonstrate a real-time digital-metasurface imager that can be trained in-situ to show high accuracy image coding and recognition for various image sets.

Guardado en:
Detalles Bibliográficos
Autores principales: Lianlin Li, Hengxin Ruan, Che Liu, Ying Li, Ya Shuang, Andrea Alù, Cheng-Wei Qiu, Tie Jun Cui
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2019
Materias:
Q
Acceso en línea:https://doaj.org/article/c5917dd7c6f245c1b84dfdc385f4e437
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!