Machine-learning reprogrammable metasurface imager

Conventional imagers require time-consuming data acquisition, or complicated reconstruction algorithms for data post-processing. Here, the authors demonstrate a real-time digital-metasurface imager that can be trained in-situ to show high accuracy image coding and recognition for various image sets.

Guardado en:
Detalles Bibliográficos
Autores principales: Lianlin Li, Hengxin Ruan, Che Liu, Ying Li, Ya Shuang, Andrea Alù, Cheng-Wei Qiu, Tie Jun Cui
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2019
Materias:
Q
Acceso en línea:https://doaj.org/article/c5917dd7c6f245c1b84dfdc385f4e437
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:c5917dd7c6f245c1b84dfdc385f4e437
record_format dspace
spelling oai:doaj.org-article:c5917dd7c6f245c1b84dfdc385f4e4372021-12-02T17:31:37ZMachine-learning reprogrammable metasurface imager10.1038/s41467-019-09103-22041-1723https://doaj.org/article/c5917dd7c6f245c1b84dfdc385f4e4372019-03-01T00:00:00Zhttps://doi.org/10.1038/s41467-019-09103-2https://doaj.org/toc/2041-1723Conventional imagers require time-consuming data acquisition, or complicated reconstruction algorithms for data post-processing. Here, the authors demonstrate a real-time digital-metasurface imager that can be trained in-situ to show high accuracy image coding and recognition for various image sets.Lianlin LiHengxin RuanChe LiuYing LiYa ShuangAndrea AlùCheng-Wei QiuTie Jun CuiNature PortfolioarticleScienceQENNature Communications, Vol 10, Iss 1, Pp 1-8 (2019)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Lianlin Li
Hengxin Ruan
Che Liu
Ying Li
Ya Shuang
Andrea Alù
Cheng-Wei Qiu
Tie Jun Cui
Machine-learning reprogrammable metasurface imager
description Conventional imagers require time-consuming data acquisition, or complicated reconstruction algorithms for data post-processing. Here, the authors demonstrate a real-time digital-metasurface imager that can be trained in-situ to show high accuracy image coding and recognition for various image sets.
format article
author Lianlin Li
Hengxin Ruan
Che Liu
Ying Li
Ya Shuang
Andrea Alù
Cheng-Wei Qiu
Tie Jun Cui
author_facet Lianlin Li
Hengxin Ruan
Che Liu
Ying Li
Ya Shuang
Andrea Alù
Cheng-Wei Qiu
Tie Jun Cui
author_sort Lianlin Li
title Machine-learning reprogrammable metasurface imager
title_short Machine-learning reprogrammable metasurface imager
title_full Machine-learning reprogrammable metasurface imager
title_fullStr Machine-learning reprogrammable metasurface imager
title_full_unstemmed Machine-learning reprogrammable metasurface imager
title_sort machine-learning reprogrammable metasurface imager
publisher Nature Portfolio
publishDate 2019
url https://doaj.org/article/c5917dd7c6f245c1b84dfdc385f4e437
work_keys_str_mv AT lianlinli machinelearningreprogrammablemetasurfaceimager
AT hengxinruan machinelearningreprogrammablemetasurfaceimager
AT cheliu machinelearningreprogrammablemetasurfaceimager
AT yingli machinelearningreprogrammablemetasurfaceimager
AT yashuang machinelearningreprogrammablemetasurfaceimager
AT andreaalu machinelearningreprogrammablemetasurfaceimager
AT chengweiqiu machinelearningreprogrammablemetasurfaceimager
AT tiejuncui machinelearningreprogrammablemetasurfaceimager
_version_ 1718380579426140160