Machine-learning reprogrammable metasurface imager
Conventional imagers require time-consuming data acquisition, or complicated reconstruction algorithms for data post-processing. Here, the authors demonstrate a real-time digital-metasurface imager that can be trained in-situ to show high accuracy image coding and recognition for various image sets.
Guardado en:
Autores principales: | , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2019
|
Materias: | |
Acceso en línea: | https://doaj.org/article/c5917dd7c6f245c1b84dfdc385f4e437 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:c5917dd7c6f245c1b84dfdc385f4e437 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:c5917dd7c6f245c1b84dfdc385f4e4372021-12-02T17:31:37ZMachine-learning reprogrammable metasurface imager10.1038/s41467-019-09103-22041-1723https://doaj.org/article/c5917dd7c6f245c1b84dfdc385f4e4372019-03-01T00:00:00Zhttps://doi.org/10.1038/s41467-019-09103-2https://doaj.org/toc/2041-1723Conventional imagers require time-consuming data acquisition, or complicated reconstruction algorithms for data post-processing. Here, the authors demonstrate a real-time digital-metasurface imager that can be trained in-situ to show high accuracy image coding and recognition for various image sets.Lianlin LiHengxin RuanChe LiuYing LiYa ShuangAndrea AlùCheng-Wei QiuTie Jun CuiNature PortfolioarticleScienceQENNature Communications, Vol 10, Iss 1, Pp 1-8 (2019) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Science Q |
spellingShingle |
Science Q Lianlin Li Hengxin Ruan Che Liu Ying Li Ya Shuang Andrea Alù Cheng-Wei Qiu Tie Jun Cui Machine-learning reprogrammable metasurface imager |
description |
Conventional imagers require time-consuming data acquisition, or complicated reconstruction algorithms for data post-processing. Here, the authors demonstrate a real-time digital-metasurface imager that can be trained in-situ to show high accuracy image coding and recognition for various image sets. |
format |
article |
author |
Lianlin Li Hengxin Ruan Che Liu Ying Li Ya Shuang Andrea Alù Cheng-Wei Qiu Tie Jun Cui |
author_facet |
Lianlin Li Hengxin Ruan Che Liu Ying Li Ya Shuang Andrea Alù Cheng-Wei Qiu Tie Jun Cui |
author_sort |
Lianlin Li |
title |
Machine-learning reprogrammable metasurface imager |
title_short |
Machine-learning reprogrammable metasurface imager |
title_full |
Machine-learning reprogrammable metasurface imager |
title_fullStr |
Machine-learning reprogrammable metasurface imager |
title_full_unstemmed |
Machine-learning reprogrammable metasurface imager |
title_sort |
machine-learning reprogrammable metasurface imager |
publisher |
Nature Portfolio |
publishDate |
2019 |
url |
https://doaj.org/article/c5917dd7c6f245c1b84dfdc385f4e437 |
work_keys_str_mv |
AT lianlinli machinelearningreprogrammablemetasurfaceimager AT hengxinruan machinelearningreprogrammablemetasurfaceimager AT cheliu machinelearningreprogrammablemetasurfaceimager AT yingli machinelearningreprogrammablemetasurfaceimager AT yashuang machinelearningreprogrammablemetasurfaceimager AT andreaalu machinelearningreprogrammablemetasurfaceimager AT chengweiqiu machinelearningreprogrammablemetasurfaceimager AT tiejuncui machinelearningreprogrammablemetasurfaceimager |
_version_ |
1718380579426140160 |