Machine-learning reprogrammable metasurface imager
Conventional imagers require time-consuming data acquisition, or complicated reconstruction algorithms for data post-processing. Here, the authors demonstrate a real-time digital-metasurface imager that can be trained in-situ to show high accuracy image coding and recognition for various image sets.
Guardado en:
Autores principales: | Lianlin Li, Hengxin Ruan, Che Liu, Ying Li, Ya Shuang, Andrea Alù, Cheng-Wei Qiu, Tie Jun Cui |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2019
|
Materias: | |
Acceso en línea: | https://doaj.org/article/c5917dd7c6f245c1b84dfdc385f4e437 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Electromagnetic reprogrammable coding-metasurface holograms
por: Lianlin Li, et al.
Publicado: (2017) -
Metasurface-assisted massive backscatter wireless communication with commodity Wi-Fi signals
por: Hanting Zhao, et al.
Publicado: (2020) -
Reprogrammable plasmonic topological insulators with ultrafast control
por: Jian Wei You, et al.
Publicado: (2021) -
Reprogrammable meta-hologram for optical encryption
por: Geyang Qu, et al.
Publicado: (2020) -
Microelectromechanical reprogrammable logic device
por: M. A. A. Hafiz, et al.
Publicado: (2016)