Machine-learning reprogrammable metasurface imager

Conventional imagers require time-consuming data acquisition, or complicated reconstruction algorithms for data post-processing. Here, the authors demonstrate a real-time digital-metasurface imager that can be trained in-situ to show high accuracy image coding and recognition for various image sets.

Enregistré dans:
Détails bibliographiques
Auteurs principaux: Lianlin Li, Hengxin Ruan, Che Liu, Ying Li, Ya Shuang, Andrea Alù, Cheng-Wei Qiu, Tie Jun Cui
Format: article
Langue:EN
Publié: Nature Portfolio 2019
Sujets:
Q
Accès en ligne:https://doaj.org/article/c5917dd7c6f245c1b84dfdc385f4e437
Tags: Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!