Predicting sex from retinal fundus photographs using automated deep learning

Abstract Deep learning may transform health care, but model development has largely been dependent on availability of advanced technical expertise. Herein we present the development of a deep learning model by clinicians without coding, which predicts reported sex from retinal fundus photographs. A...

Description complète

Enregistré dans:
Détails bibliographiques
Auteurs principaux: Edward Korot, Nikolas Pontikos, Xiaoxuan Liu, Siegfried K. Wagner, Livia Faes, Josef Huemer, Konstantinos Balaskas, Alastair K. Denniston, Anthony Khawaja, Pearse A. Keane
Format: article
Langue:EN
Publié: Nature Portfolio 2021
Sujets:
R
Q
Accès en ligne:https://doaj.org/article/c79d88f9f4344e5db04de21644fcea1e
Tags: Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!