Islands in multiverse models
Abstract We consider multiverse models in two-dimensional linear dilaton-gravity theories as toy models of false vacuum eternal inflation. Coupling conformal matter we calculate the Von Neumann entropy of subregions. When these are sufficiently large we find that an island develops covering most of...
Guardado en:
Autores principales: | , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
SpringerOpen
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/c89c48f755e84766b9e47788f1afc2eb |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:c89c48f755e84766b9e47788f1afc2eb |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:c89c48f755e84766b9e47788f1afc2eb2021-12-05T12:25:14ZIslands in multiverse models10.1007/JHEP11(2021)2121029-8479https://doaj.org/article/c89c48f755e84766b9e47788f1afc2eb2021-11-01T00:00:00Zhttps://doi.org/10.1007/JHEP11(2021)212https://doaj.org/toc/1029-8479Abstract We consider multiverse models in two-dimensional linear dilaton-gravity theories as toy models of false vacuum eternal inflation. Coupling conformal matter we calculate the Von Neumann entropy of subregions. When these are sufficiently large we find that an island develops covering most of the rest of the multiverse, leading to a Page-like transition. This resonates with a description of multiverse models in semiclassical quantum cosmology, where a measure for local predictions is given by saddle point geometries which coarse-grain over any structure associated with eternal inflation beyond one’s patch.Sergio E. Aguilar-GutierrezAidan Chatwin-DaviesThomas HertogNatalia Pinzani-FokeevaBrandon RobinsonSpringerOpenarticle2D GravityModels of Quantum GravityBlack HolesClassical Theories of GravityNuclear and particle physics. Atomic energy. RadioactivityQC770-798ENJournal of High Energy Physics, Vol 2021, Iss 11, Pp 1-41 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
2D Gravity Models of Quantum Gravity Black Holes Classical Theories of Gravity Nuclear and particle physics. Atomic energy. Radioactivity QC770-798 |
spellingShingle |
2D Gravity Models of Quantum Gravity Black Holes Classical Theories of Gravity Nuclear and particle physics. Atomic energy. Radioactivity QC770-798 Sergio E. Aguilar-Gutierrez Aidan Chatwin-Davies Thomas Hertog Natalia Pinzani-Fokeeva Brandon Robinson Islands in multiverse models |
description |
Abstract We consider multiverse models in two-dimensional linear dilaton-gravity theories as toy models of false vacuum eternal inflation. Coupling conformal matter we calculate the Von Neumann entropy of subregions. When these are sufficiently large we find that an island develops covering most of the rest of the multiverse, leading to a Page-like transition. This resonates with a description of multiverse models in semiclassical quantum cosmology, where a measure for local predictions is given by saddle point geometries which coarse-grain over any structure associated with eternal inflation beyond one’s patch. |
format |
article |
author |
Sergio E. Aguilar-Gutierrez Aidan Chatwin-Davies Thomas Hertog Natalia Pinzani-Fokeeva Brandon Robinson |
author_facet |
Sergio E. Aguilar-Gutierrez Aidan Chatwin-Davies Thomas Hertog Natalia Pinzani-Fokeeva Brandon Robinson |
author_sort |
Sergio E. Aguilar-Gutierrez |
title |
Islands in multiverse models |
title_short |
Islands in multiverse models |
title_full |
Islands in multiverse models |
title_fullStr |
Islands in multiverse models |
title_full_unstemmed |
Islands in multiverse models |
title_sort |
islands in multiverse models |
publisher |
SpringerOpen |
publishDate |
2021 |
url |
https://doaj.org/article/c89c48f755e84766b9e47788f1afc2eb |
work_keys_str_mv |
AT sergioeaguilargutierrez islandsinmultiversemodels AT aidanchatwindavies islandsinmultiversemodels AT thomashertog islandsinmultiversemodels AT nataliapinzanifokeeva islandsinmultiversemodels AT brandonrobinson islandsinmultiversemodels |
_version_ |
1718371985037197312 |