Islands in multiverse models

Abstract We consider multiverse models in two-dimensional linear dilaton-gravity theories as toy models of false vacuum eternal inflation. Coupling conformal matter we calculate the Von Neumann entropy of subregions. When these are sufficiently large we find that an island develops covering most of...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Sergio E. Aguilar-Gutierrez, Aidan Chatwin-Davies, Thomas Hertog, Natalia Pinzani-Fokeeva, Brandon Robinson
Formato: article
Lenguaje:EN
Publicado: SpringerOpen 2021
Materias:
Acceso en línea:https://doaj.org/article/c89c48f755e84766b9e47788f1afc2eb
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:c89c48f755e84766b9e47788f1afc2eb
record_format dspace
spelling oai:doaj.org-article:c89c48f755e84766b9e47788f1afc2eb2021-12-05T12:25:14ZIslands in multiverse models10.1007/JHEP11(2021)2121029-8479https://doaj.org/article/c89c48f755e84766b9e47788f1afc2eb2021-11-01T00:00:00Zhttps://doi.org/10.1007/JHEP11(2021)212https://doaj.org/toc/1029-8479Abstract We consider multiverse models in two-dimensional linear dilaton-gravity theories as toy models of false vacuum eternal inflation. Coupling conformal matter we calculate the Von Neumann entropy of subregions. When these are sufficiently large we find that an island develops covering most of the rest of the multiverse, leading to a Page-like transition. This resonates with a description of multiverse models in semiclassical quantum cosmology, where a measure for local predictions is given by saddle point geometries which coarse-grain over any structure associated with eternal inflation beyond one’s patch.Sergio E. Aguilar-GutierrezAidan Chatwin-DaviesThomas HertogNatalia Pinzani-FokeevaBrandon RobinsonSpringerOpenarticle2D GravityModels of Quantum GravityBlack HolesClassical Theories of GravityNuclear and particle physics. Atomic energy. RadioactivityQC770-798ENJournal of High Energy Physics, Vol 2021, Iss 11, Pp 1-41 (2021)
institution DOAJ
collection DOAJ
language EN
topic 2D Gravity
Models of Quantum Gravity
Black Holes
Classical Theories of Gravity
Nuclear and particle physics. Atomic energy. Radioactivity
QC770-798
spellingShingle 2D Gravity
Models of Quantum Gravity
Black Holes
Classical Theories of Gravity
Nuclear and particle physics. Atomic energy. Radioactivity
QC770-798
Sergio E. Aguilar-Gutierrez
Aidan Chatwin-Davies
Thomas Hertog
Natalia Pinzani-Fokeeva
Brandon Robinson
Islands in multiverse models
description Abstract We consider multiverse models in two-dimensional linear dilaton-gravity theories as toy models of false vacuum eternal inflation. Coupling conformal matter we calculate the Von Neumann entropy of subregions. When these are sufficiently large we find that an island develops covering most of the rest of the multiverse, leading to a Page-like transition. This resonates with a description of multiverse models in semiclassical quantum cosmology, where a measure for local predictions is given by saddle point geometries which coarse-grain over any structure associated with eternal inflation beyond one’s patch.
format article
author Sergio E. Aguilar-Gutierrez
Aidan Chatwin-Davies
Thomas Hertog
Natalia Pinzani-Fokeeva
Brandon Robinson
author_facet Sergio E. Aguilar-Gutierrez
Aidan Chatwin-Davies
Thomas Hertog
Natalia Pinzani-Fokeeva
Brandon Robinson
author_sort Sergio E. Aguilar-Gutierrez
title Islands in multiverse models
title_short Islands in multiverse models
title_full Islands in multiverse models
title_fullStr Islands in multiverse models
title_full_unstemmed Islands in multiverse models
title_sort islands in multiverse models
publisher SpringerOpen
publishDate 2021
url https://doaj.org/article/c89c48f755e84766b9e47788f1afc2eb
work_keys_str_mv AT sergioeaguilargutierrez islandsinmultiversemodels
AT aidanchatwindavies islandsinmultiversemodels
AT thomashertog islandsinmultiversemodels
AT nataliapinzanifokeeva islandsinmultiversemodels
AT brandonrobinson islandsinmultiversemodels
_version_ 1718371985037197312