Multiplex CRISPR/Cas9 genome editing in hematopoietic stem cells for fetal hemoglobin reinduction generates chromosomal translocations
Sickle cell disease and β-thalassemia are common monogenic disorders that cause significant morbidity and mortality globally. The only curative treatment currently is allogeneic hematopoietic stem cell transplantation, which is unavailable to many patients due to a lack of matched donors and carries...
Guardado en:
Autores principales: | , , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/c920282311d94065aac1d4319ebc7ffb |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:c920282311d94065aac1d4319ebc7ffb |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:c920282311d94065aac1d4319ebc7ffb2021-11-20T05:06:43ZMultiplex CRISPR/Cas9 genome editing in hematopoietic stem cells for fetal hemoglobin reinduction generates chromosomal translocations2329-050110.1016/j.omtm.2021.10.008https://doaj.org/article/c920282311d94065aac1d4319ebc7ffb2021-12-01T00:00:00Zhttp://www.sciencedirect.com/science/article/pii/S2329050121001650https://doaj.org/toc/2329-0501Sickle cell disease and β-thalassemia are common monogenic disorders that cause significant morbidity and mortality globally. The only curative treatment currently is allogeneic hematopoietic stem cell transplantation, which is unavailable to many patients due to a lack of matched donors and carries risks including graft-versus-host disease. Genome editing therapies targeting either the BCL11A erythroid enhancer or the HBG promoter are already demonstrating success in reinducing fetal hemoglobin. However, where a single locus is targeted, reliably achieving levels high enough to deliver an effective cure remains a challenge. We investigated the application of a CRISPR/Cas9 multiplex genome editing approach, in which both the BCL11A erythroid enhancer and HBG promoter are disrupted within human hematopoietic stem cells. We demonstrate superior fetal hemoglobin reinduction with this dual-editing approach without compromising engraftment or lineage differentiation potential of edited cells post-xenotransplantation. However, multiplex editing consistently resulted in the generation of chromosomal rearrangement events that persisted in vivo following transplantation into immunodeficient mice. The risk of oncogenic events resulting from such translocations therefore currently prohibits its clinical translation, but it is anticipated that, in the future, alternative editing platforms will help alleviate this risk.Clare SamuelsonStefan RadtkeHaiying ZhuMallory LlewellynEmily FieldsSavannah CookMeei-Li W. HuangKeith R. JeromeHans-Peter KiemOlivier HumbertElsevierarticleBCL11ACRISPR/Cas9fetal hemoglobingenome editingHBGmultiplex editingGeneticsQH426-470CytologyQH573-671ENMolecular Therapy: Methods & Clinical Development, Vol 23, Iss , Pp 507-523 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
BCL11A CRISPR/Cas9 fetal hemoglobin genome editing HBG multiplex editing Genetics QH426-470 Cytology QH573-671 |
spellingShingle |
BCL11A CRISPR/Cas9 fetal hemoglobin genome editing HBG multiplex editing Genetics QH426-470 Cytology QH573-671 Clare Samuelson Stefan Radtke Haiying Zhu Mallory Llewellyn Emily Fields Savannah Cook Meei-Li W. Huang Keith R. Jerome Hans-Peter Kiem Olivier Humbert Multiplex CRISPR/Cas9 genome editing in hematopoietic stem cells for fetal hemoglobin reinduction generates chromosomal translocations |
description |
Sickle cell disease and β-thalassemia are common monogenic disorders that cause significant morbidity and mortality globally. The only curative treatment currently is allogeneic hematopoietic stem cell transplantation, which is unavailable to many patients due to a lack of matched donors and carries risks including graft-versus-host disease. Genome editing therapies targeting either the BCL11A erythroid enhancer or the HBG promoter are already demonstrating success in reinducing fetal hemoglobin. However, where a single locus is targeted, reliably achieving levels high enough to deliver an effective cure remains a challenge. We investigated the application of a CRISPR/Cas9 multiplex genome editing approach, in which both the BCL11A erythroid enhancer and HBG promoter are disrupted within human hematopoietic stem cells. We demonstrate superior fetal hemoglobin reinduction with this dual-editing approach without compromising engraftment or lineage differentiation potential of edited cells post-xenotransplantation. However, multiplex editing consistently resulted in the generation of chromosomal rearrangement events that persisted in vivo following transplantation into immunodeficient mice. The risk of oncogenic events resulting from such translocations therefore currently prohibits its clinical translation, but it is anticipated that, in the future, alternative editing platforms will help alleviate this risk. |
format |
article |
author |
Clare Samuelson Stefan Radtke Haiying Zhu Mallory Llewellyn Emily Fields Savannah Cook Meei-Li W. Huang Keith R. Jerome Hans-Peter Kiem Olivier Humbert |
author_facet |
Clare Samuelson Stefan Radtke Haiying Zhu Mallory Llewellyn Emily Fields Savannah Cook Meei-Li W. Huang Keith R. Jerome Hans-Peter Kiem Olivier Humbert |
author_sort |
Clare Samuelson |
title |
Multiplex CRISPR/Cas9 genome editing in hematopoietic stem cells for fetal hemoglobin reinduction generates chromosomal translocations |
title_short |
Multiplex CRISPR/Cas9 genome editing in hematopoietic stem cells for fetal hemoglobin reinduction generates chromosomal translocations |
title_full |
Multiplex CRISPR/Cas9 genome editing in hematopoietic stem cells for fetal hemoglobin reinduction generates chromosomal translocations |
title_fullStr |
Multiplex CRISPR/Cas9 genome editing in hematopoietic stem cells for fetal hemoglobin reinduction generates chromosomal translocations |
title_full_unstemmed |
Multiplex CRISPR/Cas9 genome editing in hematopoietic stem cells for fetal hemoglobin reinduction generates chromosomal translocations |
title_sort |
multiplex crispr/cas9 genome editing in hematopoietic stem cells for fetal hemoglobin reinduction generates chromosomal translocations |
publisher |
Elsevier |
publishDate |
2021 |
url |
https://doaj.org/article/c920282311d94065aac1d4319ebc7ffb |
work_keys_str_mv |
AT claresamuelson multiplexcrisprcas9genomeeditinginhematopoieticstemcellsforfetalhemoglobinreinductiongenerateschromosomaltranslocations AT stefanradtke multiplexcrisprcas9genomeeditinginhematopoieticstemcellsforfetalhemoglobinreinductiongenerateschromosomaltranslocations AT haiyingzhu multiplexcrisprcas9genomeeditinginhematopoieticstemcellsforfetalhemoglobinreinductiongenerateschromosomaltranslocations AT malloryllewellyn multiplexcrisprcas9genomeeditinginhematopoieticstemcellsforfetalhemoglobinreinductiongenerateschromosomaltranslocations AT emilyfields multiplexcrisprcas9genomeeditinginhematopoieticstemcellsforfetalhemoglobinreinductiongenerateschromosomaltranslocations AT savannahcook multiplexcrisprcas9genomeeditinginhematopoieticstemcellsforfetalhemoglobinreinductiongenerateschromosomaltranslocations AT meeiliwhuang multiplexcrisprcas9genomeeditinginhematopoieticstemcellsforfetalhemoglobinreinductiongenerateschromosomaltranslocations AT keithrjerome multiplexcrisprcas9genomeeditinginhematopoieticstemcellsforfetalhemoglobinreinductiongenerateschromosomaltranslocations AT hanspeterkiem multiplexcrisprcas9genomeeditinginhematopoieticstemcellsforfetalhemoglobinreinductiongenerateschromosomaltranslocations AT olivierhumbert multiplexcrisprcas9genomeeditinginhematopoieticstemcellsforfetalhemoglobinreinductiongenerateschromosomaltranslocations |
_version_ |
1718419622535888896 |