Multiplex CRISPR/Cas9 genome editing in hematopoietic stem cells for fetal hemoglobin reinduction generates chromosomal translocations

Sickle cell disease and β-thalassemia are common monogenic disorders that cause significant morbidity and mortality globally. The only curative treatment currently is allogeneic hematopoietic stem cell transplantation, which is unavailable to many patients due to a lack of matched donors and carries...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Clare Samuelson, Stefan Radtke, Haiying Zhu, Mallory Llewellyn, Emily Fields, Savannah Cook, Meei-Li W. Huang, Keith R. Jerome, Hans-Peter Kiem, Olivier Humbert
Formato: article
Lenguaje:EN
Publicado: Elsevier 2021
Materias:
HBG
Acceso en línea:https://doaj.org/article/c920282311d94065aac1d4319ebc7ffb
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:c920282311d94065aac1d4319ebc7ffb
record_format dspace
spelling oai:doaj.org-article:c920282311d94065aac1d4319ebc7ffb2021-11-20T05:06:43ZMultiplex CRISPR/Cas9 genome editing in hematopoietic stem cells for fetal hemoglobin reinduction generates chromosomal translocations2329-050110.1016/j.omtm.2021.10.008https://doaj.org/article/c920282311d94065aac1d4319ebc7ffb2021-12-01T00:00:00Zhttp://www.sciencedirect.com/science/article/pii/S2329050121001650https://doaj.org/toc/2329-0501Sickle cell disease and β-thalassemia are common monogenic disorders that cause significant morbidity and mortality globally. The only curative treatment currently is allogeneic hematopoietic stem cell transplantation, which is unavailable to many patients due to a lack of matched donors and carries risks including graft-versus-host disease. Genome editing therapies targeting either the BCL11A erythroid enhancer or the HBG promoter are already demonstrating success in reinducing fetal hemoglobin. However, where a single locus is targeted, reliably achieving levels high enough to deliver an effective cure remains a challenge. We investigated the application of a CRISPR/Cas9 multiplex genome editing approach, in which both the BCL11A erythroid enhancer and HBG promoter are disrupted within human hematopoietic stem cells. We demonstrate superior fetal hemoglobin reinduction with this dual-editing approach without compromising engraftment or lineage differentiation potential of edited cells post-xenotransplantation. However, multiplex editing consistently resulted in the generation of chromosomal rearrangement events that persisted in vivo following transplantation into immunodeficient mice. The risk of oncogenic events resulting from such translocations therefore currently prohibits its clinical translation, but it is anticipated that, in the future, alternative editing platforms will help alleviate this risk.Clare SamuelsonStefan RadtkeHaiying ZhuMallory LlewellynEmily FieldsSavannah CookMeei-Li W. HuangKeith R. JeromeHans-Peter KiemOlivier HumbertElsevierarticleBCL11ACRISPR/Cas9fetal hemoglobingenome editingHBGmultiplex editingGeneticsQH426-470CytologyQH573-671ENMolecular Therapy: Methods & Clinical Development, Vol 23, Iss , Pp 507-523 (2021)
institution DOAJ
collection DOAJ
language EN
topic BCL11A
CRISPR/Cas9
fetal hemoglobin
genome editing
HBG
multiplex editing
Genetics
QH426-470
Cytology
QH573-671
spellingShingle BCL11A
CRISPR/Cas9
fetal hemoglobin
genome editing
HBG
multiplex editing
Genetics
QH426-470
Cytology
QH573-671
Clare Samuelson
Stefan Radtke
Haiying Zhu
Mallory Llewellyn
Emily Fields
Savannah Cook
Meei-Li W. Huang
Keith R. Jerome
Hans-Peter Kiem
Olivier Humbert
Multiplex CRISPR/Cas9 genome editing in hematopoietic stem cells for fetal hemoglobin reinduction generates chromosomal translocations
description Sickle cell disease and β-thalassemia are common monogenic disorders that cause significant morbidity and mortality globally. The only curative treatment currently is allogeneic hematopoietic stem cell transplantation, which is unavailable to many patients due to a lack of matched donors and carries risks including graft-versus-host disease. Genome editing therapies targeting either the BCL11A erythroid enhancer or the HBG promoter are already demonstrating success in reinducing fetal hemoglobin. However, where a single locus is targeted, reliably achieving levels high enough to deliver an effective cure remains a challenge. We investigated the application of a CRISPR/Cas9 multiplex genome editing approach, in which both the BCL11A erythroid enhancer and HBG promoter are disrupted within human hematopoietic stem cells. We demonstrate superior fetal hemoglobin reinduction with this dual-editing approach without compromising engraftment or lineage differentiation potential of edited cells post-xenotransplantation. However, multiplex editing consistently resulted in the generation of chromosomal rearrangement events that persisted in vivo following transplantation into immunodeficient mice. The risk of oncogenic events resulting from such translocations therefore currently prohibits its clinical translation, but it is anticipated that, in the future, alternative editing platforms will help alleviate this risk.
format article
author Clare Samuelson
Stefan Radtke
Haiying Zhu
Mallory Llewellyn
Emily Fields
Savannah Cook
Meei-Li W. Huang
Keith R. Jerome
Hans-Peter Kiem
Olivier Humbert
author_facet Clare Samuelson
Stefan Radtke
Haiying Zhu
Mallory Llewellyn
Emily Fields
Savannah Cook
Meei-Li W. Huang
Keith R. Jerome
Hans-Peter Kiem
Olivier Humbert
author_sort Clare Samuelson
title Multiplex CRISPR/Cas9 genome editing in hematopoietic stem cells for fetal hemoglobin reinduction generates chromosomal translocations
title_short Multiplex CRISPR/Cas9 genome editing in hematopoietic stem cells for fetal hemoglobin reinduction generates chromosomal translocations
title_full Multiplex CRISPR/Cas9 genome editing in hematopoietic stem cells for fetal hemoglobin reinduction generates chromosomal translocations
title_fullStr Multiplex CRISPR/Cas9 genome editing in hematopoietic stem cells for fetal hemoglobin reinduction generates chromosomal translocations
title_full_unstemmed Multiplex CRISPR/Cas9 genome editing in hematopoietic stem cells for fetal hemoglobin reinduction generates chromosomal translocations
title_sort multiplex crispr/cas9 genome editing in hematopoietic stem cells for fetal hemoglobin reinduction generates chromosomal translocations
publisher Elsevier
publishDate 2021
url https://doaj.org/article/c920282311d94065aac1d4319ebc7ffb
work_keys_str_mv AT claresamuelson multiplexcrisprcas9genomeeditinginhematopoieticstemcellsforfetalhemoglobinreinductiongenerateschromosomaltranslocations
AT stefanradtke multiplexcrisprcas9genomeeditinginhematopoieticstemcellsforfetalhemoglobinreinductiongenerateschromosomaltranslocations
AT haiyingzhu multiplexcrisprcas9genomeeditinginhematopoieticstemcellsforfetalhemoglobinreinductiongenerateschromosomaltranslocations
AT malloryllewellyn multiplexcrisprcas9genomeeditinginhematopoieticstemcellsforfetalhemoglobinreinductiongenerateschromosomaltranslocations
AT emilyfields multiplexcrisprcas9genomeeditinginhematopoieticstemcellsforfetalhemoglobinreinductiongenerateschromosomaltranslocations
AT savannahcook multiplexcrisprcas9genomeeditinginhematopoieticstemcellsforfetalhemoglobinreinductiongenerateschromosomaltranslocations
AT meeiliwhuang multiplexcrisprcas9genomeeditinginhematopoieticstemcellsforfetalhemoglobinreinductiongenerateschromosomaltranslocations
AT keithrjerome multiplexcrisprcas9genomeeditinginhematopoieticstemcellsforfetalhemoglobinreinductiongenerateschromosomaltranslocations
AT hanspeterkiem multiplexcrisprcas9genomeeditinginhematopoieticstemcellsforfetalhemoglobinreinductiongenerateschromosomaltranslocations
AT olivierhumbert multiplexcrisprcas9genomeeditinginhematopoieticstemcellsforfetalhemoglobinreinductiongenerateschromosomaltranslocations
_version_ 1718419622535888896