FAIR data representation in times of eScience: a comparison of instance-based and class-based semantic representations of empirical data using phenotype descriptions as example

Abstract Background The size, velocity, and heterogeneity of Big Data outclasses conventional data management tools and requires data and metadata to be fully machine-actionable (i.e., eScience-compliant) and thus findable, accessible, interoperable, and reusable (FAIR). This can be achieved by usin...

Description complète

Enregistré dans:
Détails bibliographiques
Auteur principal: Lars Vogt
Format: article
Langue:EN
Publié: BMC 2021
Sujets:
Accès en ligne:https://doaj.org/article/c9ed335667ea417582a15ce9c309b953
Tags: Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!