FAIR data representation in times of eScience: a comparison of instance-based and class-based semantic representations of empirical data using phenotype descriptions as example

Abstract Background The size, velocity, and heterogeneity of Big Data outclasses conventional data management tools and requires data and metadata to be fully machine-actionable (i.e., eScience-compliant) and thus findable, accessible, interoperable, and reusable (FAIR). This can be achieved by usin...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Lars Vogt
Formato: article
Lenguaje:EN
Publicado: BMC 2021
Materias:
Acceso en línea:https://doaj.org/article/c9ed335667ea417582a15ce9c309b953
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!