FAIR data representation in times of eScience: a comparison of instance-based and class-based semantic representations of empirical data using phenotype descriptions as example
Abstract Background The size, velocity, and heterogeneity of Big Data outclasses conventional data management tools and requires data and metadata to be fully machine-actionable (i.e., eScience-compliant) and thus findable, accessible, interoperable, and reusable (FAIR). This can be achieved by usin...
Enregistré dans:
Auteur principal: | |
---|---|
Format: | article |
Langue: | EN |
Publié: |
BMC
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/c9ed335667ea417582a15ce9c309b953 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|