FAIR data representation in times of eScience: a comparison of instance-based and class-based semantic representations of empirical data using phenotype descriptions as example
Abstract Background The size, velocity, and heterogeneity of Big Data outclasses conventional data management tools and requires data and metadata to be fully machine-actionable (i.e., eScience-compliant) and thus findable, accessible, interoperable, and reusable (FAIR). This can be achieved by usin...
Guardado en:
Autor principal: | Lars Vogt |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
BMC
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/c9ed335667ea417582a15ce9c309b953 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
A Survey on Energy Efficiency in Smart Homes and Smart Grids
por: Lisardo Prieto González, et al.
Publicado: (2021) -
Integration of Government Services using Semantic Technologies
por: Hreño,Ján, et al.
Publicado: (2011) -
Path-based knowledge reasoning with textual semantic information for medical knowledge graph completion
por: Yinyu Lan, et al.
Publicado: (2021) -
SGA-Net: Self-Constructing Graph Attention Neural Network for Semantic Segmentation of Remote Sensing Images
por: Wenjie Zi, et al.
Publicado: (2021) -
Architecture of Cloud Telecommunication Network Monitoring Platform Based on Knowledge Graphs
por: Kirill Krinkin, et al.
Publicado: (2021)