Mechanical plasticity of collagen directs branch elongation in human mammary gland organoids

Mammary organoid growth from single primary human cells rely on distinct morphogenetic processes. Here, the authors observe by live cell imaging the importance of the plastic mechanical response of the extracellular matrix and cell migration for the underlying arborized structure formation process.

Guardado en:
Detalles Bibliográficos
Autores principales: B. Buchmann, L. K. Engelbrecht, P. Fernandez, F. P. Hutterer, M. K. Raich, C. H. Scheel, A. R. Bausch
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
Q
Acceso en línea:https://doaj.org/article/ca6fd98434244dba96daeb649f0b2389
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:ca6fd98434244dba96daeb649f0b2389
record_format dspace
spelling oai:doaj.org-article:ca6fd98434244dba96daeb649f0b23892021-12-02T15:54:58ZMechanical plasticity of collagen directs branch elongation in human mammary gland organoids10.1038/s41467-021-22988-22041-1723https://doaj.org/article/ca6fd98434244dba96daeb649f0b23892021-05-01T00:00:00Zhttps://doi.org/10.1038/s41467-021-22988-2https://doaj.org/toc/2041-1723Mammary organoid growth from single primary human cells rely on distinct morphogenetic processes. Here, the authors observe by live cell imaging the importance of the plastic mechanical response of the extracellular matrix and cell migration for the underlying arborized structure formation process.B. BuchmannL. K. EngelbrechtP. FernandezF. P. HuttererM. K. RaichC. H. ScheelA. R. BauschNature PortfolioarticleScienceQENNature Communications, Vol 12, Iss 1, Pp 1-10 (2021)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
B. Buchmann
L. K. Engelbrecht
P. Fernandez
F. P. Hutterer
M. K. Raich
C. H. Scheel
A. R. Bausch
Mechanical plasticity of collagen directs branch elongation in human mammary gland organoids
description Mammary organoid growth from single primary human cells rely on distinct morphogenetic processes. Here, the authors observe by live cell imaging the importance of the plastic mechanical response of the extracellular matrix and cell migration for the underlying arborized structure formation process.
format article
author B. Buchmann
L. K. Engelbrecht
P. Fernandez
F. P. Hutterer
M. K. Raich
C. H. Scheel
A. R. Bausch
author_facet B. Buchmann
L. K. Engelbrecht
P. Fernandez
F. P. Hutterer
M. K. Raich
C. H. Scheel
A. R. Bausch
author_sort B. Buchmann
title Mechanical plasticity of collagen directs branch elongation in human mammary gland organoids
title_short Mechanical plasticity of collagen directs branch elongation in human mammary gland organoids
title_full Mechanical plasticity of collagen directs branch elongation in human mammary gland organoids
title_fullStr Mechanical plasticity of collagen directs branch elongation in human mammary gland organoids
title_full_unstemmed Mechanical plasticity of collagen directs branch elongation in human mammary gland organoids
title_sort mechanical plasticity of collagen directs branch elongation in human mammary gland organoids
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/ca6fd98434244dba96daeb649f0b2389
work_keys_str_mv AT bbuchmann mechanicalplasticityofcollagendirectsbranchelongationinhumanmammaryglandorganoids
AT lkengelbrecht mechanicalplasticityofcollagendirectsbranchelongationinhumanmammaryglandorganoids
AT pfernandez mechanicalplasticityofcollagendirectsbranchelongationinhumanmammaryglandorganoids
AT fphutterer mechanicalplasticityofcollagendirectsbranchelongationinhumanmammaryglandorganoids
AT mkraich mechanicalplasticityofcollagendirectsbranchelongationinhumanmammaryglandorganoids
AT chscheel mechanicalplasticityofcollagendirectsbranchelongationinhumanmammaryglandorganoids
AT arbausch mechanicalplasticityofcollagendirectsbranchelongationinhumanmammaryglandorganoids
_version_ 1718385475969875968