Learning Non-Parametric Surrogate Losses With Correlated Gradients
Training models by minimizing surrogate loss functions with gradient-based algorithms is a standard approach in various vision tasks. This strategy often leads to suboptimal solutions due to the gap between the target evaluation metrics and surrogate loss functions. In this paper, we propose a frame...
Guardado en:
Autores principales: | , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
IEEE
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/ca7f6616a3d54055ac07358cd8af428b |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|