Learning Non-Parametric Surrogate Losses With Correlated Gradients

Training models by minimizing surrogate loss functions with gradient-based algorithms is a standard approach in various vision tasks. This strategy often leads to suboptimal solutions due to the gap between the target evaluation metrics and surrogate loss functions. In this paper, we propose a frame...

Description complète

Enregistré dans:
Détails bibliographiques
Auteurs principaux: Seungdong Yoa, Jinyoung Park, Hyunwoo J. Kim
Format: article
Langue:EN
Publié: IEEE 2021
Sujets:
Accès en ligne:https://doaj.org/article/ca7f6616a3d54055ac07358cd8af428b
Tags: Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!