Learning Non-Parametric Surrogate Losses With Correlated Gradients

Training models by minimizing surrogate loss functions with gradient-based algorithms is a standard approach in various vision tasks. This strategy often leads to suboptimal solutions due to the gap between the target evaluation metrics and surrogate loss functions. In this paper, we propose a frame...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Seungdong Yoa, Jinyoung Park, Hyunwoo J. Kim
Formato: article
Lenguaje:EN
Publicado: IEEE 2021
Materias:
Acceso en línea:https://doaj.org/article/ca7f6616a3d54055ac07358cd8af428b
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

Ejemplares similares