Learning Non-Parametric Surrogate Losses With Correlated Gradients
Training models by minimizing surrogate loss functions with gradient-based algorithms is a standard approach in various vision tasks. This strategy often leads to suboptimal solutions due to the gap between the target evaluation metrics and surrogate loss functions. In this paper, we propose a frame...
Guardado en:
Autores principales: | Seungdong Yoa, Jinyoung Park, Hyunwoo J. Kim |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
IEEE
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/ca7f6616a3d54055ac07358cd8af428b |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Self-Supervised Learning for Anomaly Detection With Dynamic Local Augmentation
por: Seungdong Yoa, et al.
Publicado: (2021) -
GenRadar: Self-Supervised Probabilistic Camera Synthesis Based on Radar Frequencies
por: Carsten Ditzel, et al.
Publicado: (2021) -
A Method for MBTI Classification Based on Impact of Class Components
por: Ninoslav Cerkez, et al.
Publicado: (2021) -
A Comprehensive Review on Fake News Detection With Deep Learning
por: M. F. Mridha, et al.
Publicado: (2021) -
CRF-EfficientUNet: An Improved UNet Framework for Polyp Segmentation in Colonoscopy Images With Combined Asymmetric Loss Function and CRF-RNN Layer
por: Le Thi Thu Hong, et al.
Publicado: (2021)