Glutamate utilization couples oxidative stress defense and the tricarboxylic acid cycle in Francisella phagosomal escape.

Intracellular bacterial pathogens have developed a variety of strategies to avoid degradation by the host innate immune defense mechanisms triggered upon phagocytocis. Upon infection of mammalian host cells, the intracellular pathogen Francisella replicates exclusively in the cytosolic compartment....

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Elodie Ramond, Gael Gesbert, Mélanie Rigard, Julien Dairou, Marion Dupuis, Iharilalao Dubail, Karin Meibom, Thomas Henry, Monique Barel, Alain Charbit
Formato: article
Lenguaje:EN
Publicado: Public Library of Science (PLoS) 2014
Materias:
Acceso en línea:https://doaj.org/article/ca9c6d9a8fcd4e988e24149e35d7aacf
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:ca9c6d9a8fcd4e988e24149e35d7aacf
record_format dspace
spelling oai:doaj.org-article:ca9c6d9a8fcd4e988e24149e35d7aacf2021-11-18T06:07:05ZGlutamate utilization couples oxidative stress defense and the tricarboxylic acid cycle in Francisella phagosomal escape.1553-73661553-737410.1371/journal.ppat.1003893https://doaj.org/article/ca9c6d9a8fcd4e988e24149e35d7aacf2014-01-01T00:00:00Zhttps://www.ncbi.nlm.nih.gov/pmc/articles/pmid/24453979/?tool=EBIhttps://doaj.org/toc/1553-7366https://doaj.org/toc/1553-7374Intracellular bacterial pathogens have developed a variety of strategies to avoid degradation by the host innate immune defense mechanisms triggered upon phagocytocis. Upon infection of mammalian host cells, the intracellular pathogen Francisella replicates exclusively in the cytosolic compartment. Hence, its ability to escape rapidly from the phagosomal compartment is critical for its pathogenicity. Here, we show for the first time that a glutamate transporter of Francisella (here designated GadC) is critical for oxidative stress defense in the phagosome, thus impairing intra-macrophage multiplication and virulence in the mouse model. The gadC mutant failed to efficiently neutralize the production of reactive oxygen species. Remarkably, virulence of the gadC mutant was partially restored in mice defective in NADPH oxidase activity. The data presented highlight links between glutamate uptake, oxidative stress defense, the tricarboxylic acid cycle and phagosomal escape. This is the first report establishing the role of an amino acid transporter in the early stage of the Francisella intracellular lifecycle.Elodie RamondGael GesbertMélanie RigardJulien DairouMarion DupuisIharilalao DubailKarin MeibomThomas HenryMonique BarelAlain CharbitPublic Library of Science (PLoS)articleImmunologic diseases. AllergyRC581-607Biology (General)QH301-705.5ENPLoS Pathogens, Vol 10, Iss 1, p e1003893 (2014)
institution DOAJ
collection DOAJ
language EN
topic Immunologic diseases. Allergy
RC581-607
Biology (General)
QH301-705.5
spellingShingle Immunologic diseases. Allergy
RC581-607
Biology (General)
QH301-705.5
Elodie Ramond
Gael Gesbert
Mélanie Rigard
Julien Dairou
Marion Dupuis
Iharilalao Dubail
Karin Meibom
Thomas Henry
Monique Barel
Alain Charbit
Glutamate utilization couples oxidative stress defense and the tricarboxylic acid cycle in Francisella phagosomal escape.
description Intracellular bacterial pathogens have developed a variety of strategies to avoid degradation by the host innate immune defense mechanisms triggered upon phagocytocis. Upon infection of mammalian host cells, the intracellular pathogen Francisella replicates exclusively in the cytosolic compartment. Hence, its ability to escape rapidly from the phagosomal compartment is critical for its pathogenicity. Here, we show for the first time that a glutamate transporter of Francisella (here designated GadC) is critical for oxidative stress defense in the phagosome, thus impairing intra-macrophage multiplication and virulence in the mouse model. The gadC mutant failed to efficiently neutralize the production of reactive oxygen species. Remarkably, virulence of the gadC mutant was partially restored in mice defective in NADPH oxidase activity. The data presented highlight links between glutamate uptake, oxidative stress defense, the tricarboxylic acid cycle and phagosomal escape. This is the first report establishing the role of an amino acid transporter in the early stage of the Francisella intracellular lifecycle.
format article
author Elodie Ramond
Gael Gesbert
Mélanie Rigard
Julien Dairou
Marion Dupuis
Iharilalao Dubail
Karin Meibom
Thomas Henry
Monique Barel
Alain Charbit
author_facet Elodie Ramond
Gael Gesbert
Mélanie Rigard
Julien Dairou
Marion Dupuis
Iharilalao Dubail
Karin Meibom
Thomas Henry
Monique Barel
Alain Charbit
author_sort Elodie Ramond
title Glutamate utilization couples oxidative stress defense and the tricarboxylic acid cycle in Francisella phagosomal escape.
title_short Glutamate utilization couples oxidative stress defense and the tricarboxylic acid cycle in Francisella phagosomal escape.
title_full Glutamate utilization couples oxidative stress defense and the tricarboxylic acid cycle in Francisella phagosomal escape.
title_fullStr Glutamate utilization couples oxidative stress defense and the tricarboxylic acid cycle in Francisella phagosomal escape.
title_full_unstemmed Glutamate utilization couples oxidative stress defense and the tricarboxylic acid cycle in Francisella phagosomal escape.
title_sort glutamate utilization couples oxidative stress defense and the tricarboxylic acid cycle in francisella phagosomal escape.
publisher Public Library of Science (PLoS)
publishDate 2014
url https://doaj.org/article/ca9c6d9a8fcd4e988e24149e35d7aacf
work_keys_str_mv AT elodieramond glutamateutilizationcouplesoxidativestressdefenseandthetricarboxylicacidcycleinfrancisellaphagosomalescape
AT gaelgesbert glutamateutilizationcouplesoxidativestressdefenseandthetricarboxylicacidcycleinfrancisellaphagosomalescape
AT melanierigard glutamateutilizationcouplesoxidativestressdefenseandthetricarboxylicacidcycleinfrancisellaphagosomalescape
AT juliendairou glutamateutilizationcouplesoxidativestressdefenseandthetricarboxylicacidcycleinfrancisellaphagosomalescape
AT mariondupuis glutamateutilizationcouplesoxidativestressdefenseandthetricarboxylicacidcycleinfrancisellaphagosomalescape
AT iharilalaodubail glutamateutilizationcouplesoxidativestressdefenseandthetricarboxylicacidcycleinfrancisellaphagosomalescape
AT karinmeibom glutamateutilizationcouplesoxidativestressdefenseandthetricarboxylicacidcycleinfrancisellaphagosomalescape
AT thomashenry glutamateutilizationcouplesoxidativestressdefenseandthetricarboxylicacidcycleinfrancisellaphagosomalescape
AT moniquebarel glutamateutilizationcouplesoxidativestressdefenseandthetricarboxylicacidcycleinfrancisellaphagosomalescape
AT alaincharbit glutamateutilizationcouplesoxidativestressdefenseandthetricarboxylicacidcycleinfrancisellaphagosomalescape
_version_ 1718424567367598080