In vitro synthesis of gene-length single-stranded DNA

Abstract Single-stranded DNA (ssDNA) increases the likelihood of homology directed repair with reduced cellular toxicity. However, ssDNA synthesis strategies are limited by the maximum length attainable, ranging from a few hundred nucleotides for chemical synthesis to a few thousand nucleotides for...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Rémi Veneziano, Tyson R. Shepherd, Sakul Ratanalert, Leila Bellou, Chaoqun Tao, Mark Bathe
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2018
Materias:
R
Q
Acceso en línea:https://doaj.org/article/cb86edf54d00480d9e19c68973dc90bb
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:cb86edf54d00480d9e19c68973dc90bb
record_format dspace
spelling oai:doaj.org-article:cb86edf54d00480d9e19c68973dc90bb2021-12-02T15:08:37ZIn vitro synthesis of gene-length single-stranded DNA10.1038/s41598-018-24677-52045-2322https://doaj.org/article/cb86edf54d00480d9e19c68973dc90bb2018-04-01T00:00:00Zhttps://doi.org/10.1038/s41598-018-24677-5https://doaj.org/toc/2045-2322Abstract Single-stranded DNA (ssDNA) increases the likelihood of homology directed repair with reduced cellular toxicity. However, ssDNA synthesis strategies are limited by the maximum length attainable, ranging from a few hundred nucleotides for chemical synthesis to a few thousand nucleotides for enzymatic synthesis, as well as limited control over nucleotide composition. Here, we apply purely enzymatic synthesis to generate ssDNA greater than 15 kilobases (kb) using asymmetric PCR, and illustrate the incorporation of diverse modified nucleotides for therapeutic and theranostic applications.Rémi VenezianoTyson R. ShepherdSakul RatanalertLeila BellouChaoqun TaoMark BatheNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 8, Iss 1, Pp 1-7 (2018)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Rémi Veneziano
Tyson R. Shepherd
Sakul Ratanalert
Leila Bellou
Chaoqun Tao
Mark Bathe
In vitro synthesis of gene-length single-stranded DNA
description Abstract Single-stranded DNA (ssDNA) increases the likelihood of homology directed repair with reduced cellular toxicity. However, ssDNA synthesis strategies are limited by the maximum length attainable, ranging from a few hundred nucleotides for chemical synthesis to a few thousand nucleotides for enzymatic synthesis, as well as limited control over nucleotide composition. Here, we apply purely enzymatic synthesis to generate ssDNA greater than 15 kilobases (kb) using asymmetric PCR, and illustrate the incorporation of diverse modified nucleotides for therapeutic and theranostic applications.
format article
author Rémi Veneziano
Tyson R. Shepherd
Sakul Ratanalert
Leila Bellou
Chaoqun Tao
Mark Bathe
author_facet Rémi Veneziano
Tyson R. Shepherd
Sakul Ratanalert
Leila Bellou
Chaoqun Tao
Mark Bathe
author_sort Rémi Veneziano
title In vitro synthesis of gene-length single-stranded DNA
title_short In vitro synthesis of gene-length single-stranded DNA
title_full In vitro synthesis of gene-length single-stranded DNA
title_fullStr In vitro synthesis of gene-length single-stranded DNA
title_full_unstemmed In vitro synthesis of gene-length single-stranded DNA
title_sort in vitro synthesis of gene-length single-stranded dna
publisher Nature Portfolio
publishDate 2018
url https://doaj.org/article/cb86edf54d00480d9e19c68973dc90bb
work_keys_str_mv AT remiveneziano invitrosynthesisofgenelengthsinglestrandeddna
AT tysonrshepherd invitrosynthesisofgenelengthsinglestrandeddna
AT sakulratanalert invitrosynthesisofgenelengthsinglestrandeddna
AT leilabellou invitrosynthesisofgenelengthsinglestrandeddna
AT chaoquntao invitrosynthesisofgenelengthsinglestrandeddna
AT markbathe invitrosynthesisofgenelengthsinglestrandeddna
_version_ 1718388088113201152