Deep learning ferroelectric polarization distributions from STEM data via with and without atom finding
Abstract Over the last decade, scanning transmission electron microscopy (STEM) has emerged as a powerful tool for probing atomic structures of complex materials with picometer precision, opening the pathway toward exploring ferroelectric, ferroelastic, and chemical phenomena on the atomic scale. An...
Guardado en:
Autores principales: | Christopher T. Nelson, Ayana Ghosh, Mark Oxley, Xiaohang Zhang, Maxim Ziatdinov, Ichiro Takeuchi, Sergei V. Kalinin |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/cc3e9a82689c4472ba644777e5a547c8 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Ensemble learning-iterative training machine learning for uncertainty quantification and automated experiment in atom-resolved microscopy
por: Ayana Ghosh, et al.
Publicado: (2021) -
Probing atomic-scale symmetry breaking by rotationally invariant machine learning of multidimensional electron scattering
por: Mark P. Oxley, et al.
Publicado: (2021) -
Learning surface molecular structures via machine vision
por: Maxim Ziatdinov, et al.
Publicado: (2017) -
Thermodynamics of order and randomness in dopant distributions inferred from atomically resolved imaging
por: Lukas Vlcek, et al.
Publicado: (2021) -
Off-the-shelf deep learning is not enough, and requires parsimony, Bayesianity, and causality
por: Rama K. Vasudevan, et al.
Publicado: (2021)