Deep learning ferroelectric polarization distributions from STEM data via with and without atom finding

Abstract Over the last decade, scanning transmission electron microscopy (STEM) has emerged as a powerful tool for probing atomic structures of complex materials with picometer precision, opening the pathway toward exploring ferroelectric, ferroelastic, and chemical phenomena on the atomic scale. An...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Christopher T. Nelson, Ayana Ghosh, Mark Oxley, Xiaohang Zhang, Maxim Ziatdinov, Ichiro Takeuchi, Sergei V. Kalinin
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
Acceso en línea:https://doaj.org/article/cc3e9a82689c4472ba644777e5a547c8
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

Ejemplares similares