Experimental search for high-temperature ferroelectric perovskites guided by two-step machine learning
Experimental search for high-temperature ferroelectric perovskites is challenging due to the vast chemical space and lack of predictive guidelines. Here the authors demonstrate a two-step machine learning approach to sequentially guide experiments in search of promising perovskites with high ferroel...
Guardado en:
| Autores principales: | , , , |
|---|---|
| Formato: | article |
| Lenguaje: | EN |
| Publicado: |
Nature Portfolio
2018
|
| Materias: | |
| Acceso en línea: | https://doaj.org/article/cc660229b2ca4dd09848e4c55c3589a5 |
| Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
| Sumario: | Experimental search for high-temperature ferroelectric perovskites is challenging due to the vast chemical space and lack of predictive guidelines. Here the authors demonstrate a two-step machine learning approach to sequentially guide experiments in search of promising perovskites with high ferroelectric Curie temperature. |
|---|