Experimental search for high-temperature ferroelectric perovskites guided by two-step machine learning

Experimental search for high-temperature ferroelectric perovskites is challenging due to the vast chemical space and lack of predictive guidelines. Here the authors demonstrate a two-step machine learning approach to sequentially guide experiments in search of promising perovskites with high ferroel...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Prasanna V. Balachandran, Benjamin Kowalski, Alp Sehirlioglu, Turab Lookman
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2018
Materias:
Q
Acceso en línea:https://doaj.org/article/cc660229b2ca4dd09848e4c55c3589a5
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Experimental search for high-temperature ferroelectric perovskites is challenging due to the vast chemical space and lack of predictive guidelines. Here the authors demonstrate a two-step machine learning approach to sequentially guide experiments in search of promising perovskites with high ferroelectric Curie temperature.