Experimental search for high-temperature ferroelectric perovskites guided by two-step machine learning
Experimental search for high-temperature ferroelectric perovskites is challenging due to the vast chemical space and lack of predictive guidelines. Here the authors demonstrate a two-step machine learning approach to sequentially guide experiments in search of promising perovskites with high ferroel...
Enregistré dans:
Auteurs principaux: | , , , |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2018
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/cc660229b2ca4dd09848e4c55c3589a5 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Résumé: | Experimental search for high-temperature ferroelectric perovskites is challenging due to the vast chemical space and lack of predictive guidelines. Here the authors demonstrate a two-step machine learning approach to sequentially guide experiments in search of promising perovskites with high ferroelectric Curie temperature. |
---|