Decomposition of gene expression state space trajectories.
Representing and analyzing complex networks remains a roadblock to creating dynamic network models of biological processes and pathways. The study of cell fate transitions can reveal much about the transcriptional regulatory programs that underlie these phenotypic changes and give rise to the coordi...
Enregistré dans:
Auteurs principaux: | Jessica C Mar, John Quackenbush |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Public Library of Science (PLoS)
2009
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/cd35d5efcdfe4e87b8d4ad411e3fdee2 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Predictability of evolutionary trajectories in fitness landscapes.
par: Alexander E Lobkovsky, et autres
Publié: (2011) -
Differential contribution to gene expression prediction of histone modifications at enhancers or promoters.
par: Mar González-Ramírez, et autres
Publié: (2021) -
Full design automation of multi-state RNA devices to program gene expression using energy-based optimization.
par: Guillermo Rodrigo, et autres
Publié: (2013) -
Partial information decomposition reveals that synergistic neural integration is greater downstream of recurrent information flow in organotypic cortical cultures.
par: Samantha P Sherrill, et autres
Publié: (2021) -
A state-space approach to understand responses of organisms, populations and communities to multiple environmental drivers
par: Luis Giménez, et autres
Publié: (2021)