Prediction of Yangtze River streamflow based on deep learning neural network with El Niño–Southern Oscillation
Abstract Accurate long-term streamflow and flood forecasting have always been an important research direction in hydrology research. Nowadays, climate change, floods, and other anomalies occurring more and more frequently and bringing great losses to society. The prediction of streamflow, especially...
Enregistré dans:
Auteurs principaux: | Si Ha, Darong Liu, Lin Mu |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/ceb6f4dd31da415ab4b3e63b5e061909 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Projecting the impacts of climate change on streamflow in the upper reaches of the Yangtze River basin
par: Danyang Gao, et autres
Publié: (2021) -
Evaluation of Streamflow under Climate Change in the Zambezi River Basin of Southern Africa
par: George Z. Ndhlovu, et autres
Publié: (2021) -
Streamflow prediction using an integrated methodology based on convolutional neural network and long short-term memory networks
par: Sujan Ghimire, et autres
Publié: (2021) -
EEMD- and VMD-based hybrid GPR models for river streamflow point and interval predictions
par: Roghayeh Ghasempour, et autres
Publié: (2021) -
Multivariate Streamflow Simulation Using Hybrid Deep Learning Models
par: Eyob Betru Wegayehu, et autres
Publié: (2021)