Oxygen Sensors for Industrial Application
The present work aimed to study a family of solid ceramic electrolytes based on magnesium oxide doped zirconium oxide, usually identified as Mg-PSZ (zirconia partially stabilized with magnesia), used in the manufacture of oxygen sensors for molten metals. A set of electrolytes was prepared by mechan...
Enregistré dans:
Auteur principal: | |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Universidade do Porto
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/cf755ff3d5b34d2f842e44c8c9d436c2 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Résumé: | The present work aimed to study a family of solid ceramic electrolytes based on magnesium oxide doped zirconium oxide, usually identified as Mg-PSZ (zirconia partially stabilized with magnesia), used in the manufacture of oxygen sensors for molten metals. A set of electrolytes was prepared by mechanical (milling) and thermal (sintering) processing, varying the composition in magnesia and the cooling rate from the sintering temperature. These two parameters are essential in terms of phase composition and microstructure of Mg-PSZ, determining the behavior of these materials. The structural and microstructural characterization was done by means of X-ray diffraction (XRD). The electrical properties were analyzed by impedance spectroscopy in air. In general, the results obtained from various concentrations of dopant, different cooling rates and the same sintering step condition showed an increased conductivity for samples with predominance of high temperature stable phases (tetragonal and cubic). |
---|