Interferon tau alleviates obesity-induced adipose tissue inflammation and insulin resistance by regulating macrophage polarization.
Chronic adipose tissue inflammation is a hallmark of obesity-induced insulin resistance and anti-inflammatory agents can benefit patients with obesity-associated syndromes. Currently available type I interferons for therapeutic immunomodulation are accompanied by high cytotoxicity and therefore in t...
Guardado en:
Autores principales: | , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2014
|
Materias: | |
Acceso en línea: | https://doaj.org/article/d0881167d56545139c0db1b89418b02a |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | Chronic adipose tissue inflammation is a hallmark of obesity-induced insulin resistance and anti-inflammatory agents can benefit patients with obesity-associated syndromes. Currently available type I interferons for therapeutic immunomodulation are accompanied by high cytotoxicity and therefore in this study we have examined anti-inflammatory effects of interferon tau (IFNT), a member of the type I interferon family with low cellular toxicity even at high doses. Using a diet-induced obesity mouse model, we observed enhanced insulin sensitivity in obese mice administered IFNT compared to control mice, which was accompanied by a significant decrease in secretion of proinflammatory cytokines and elevated anti-inflammatory macrophages (M2) in adipose tissue. Further investigations revealed that IFNT is a potent regulator of macrophage activation that favors anti-inflammatory responses as evidenced by activation of associated surface antigens, production of anti-inflammatory cytokines, and activation of selective cell signaling pathways. Thus, our study demonstrates, for the first time, that IFNT can significantly mitigate obesity-associated systemic insulin resistance and tissue inflammation by controlling macrophage polarization, and thus IFNT can be a novel bio-therapeutic agent for treating obesity-associated syndromes and type 2 diabetes. |
---|