Infinitesimals via Cauchy sequences: Refining the classical equivalence

A refinement of the classic equivalence relation among Cauchy sequences yields a useful infinitesimal-enriched number system. Such an approach can be seen as formalizing Cauchy’s sentiment that a null sequence “becomes” an infinitesimal. We signal a little-noticed construction of a system with infin...

Full description

Saved in:
Bibliographic Details
Main Authors: Bottazzi Emanuele, Katz Mikhail G.
Format: article
Language:EN
Published: De Gruyter 2021
Subjects:
Online Access:https://doaj.org/article/d13d18f012f6434e84d91c4e892b4564
Tags: Add Tag
No Tags, Be the first to tag this record!
id oai:doaj.org-article:d13d18f012f6434e84d91c4e892b4564
record_format dspace
spelling oai:doaj.org-article:d13d18f012f6434e84d91c4e892b45642021-12-05T14:10:53ZInfinitesimals via Cauchy sequences: Refining the classical equivalence2391-545510.1515/math-2021-0048https://doaj.org/article/d13d18f012f6434e84d91c4e892b45642021-06-01T00:00:00Zhttps://doi.org/10.1515/math-2021-0048https://doaj.org/toc/2391-5455A refinement of the classic equivalence relation among Cauchy sequences yields a useful infinitesimal-enriched number system. Such an approach can be seen as formalizing Cauchy’s sentiment that a null sequence “becomes” an infinitesimal. We signal a little-noticed construction of a system with infinitesimals in a 1910 publication by Giuseppe Peano, reversing his earlier endorsement of Cantor’s belittling of infinitesimals.Bottazzi EmanueleKatz Mikhail G.De Gruyterarticlecauchy sequencehyperrealinfinitesimal03h0526e35MathematicsQA1-939ENOpen Mathematics, Vol 19, Iss 1, Pp 477-482 (2021)
institution DOAJ
collection DOAJ
language EN
topic cauchy sequence
hyperreal
infinitesimal
03h05
26e35
Mathematics
QA1-939
spellingShingle cauchy sequence
hyperreal
infinitesimal
03h05
26e35
Mathematics
QA1-939
Bottazzi Emanuele
Katz Mikhail G.
Infinitesimals via Cauchy sequences: Refining the classical equivalence
description A refinement of the classic equivalence relation among Cauchy sequences yields a useful infinitesimal-enriched number system. Such an approach can be seen as formalizing Cauchy’s sentiment that a null sequence “becomes” an infinitesimal. We signal a little-noticed construction of a system with infinitesimals in a 1910 publication by Giuseppe Peano, reversing his earlier endorsement of Cantor’s belittling of infinitesimals.
format article
author Bottazzi Emanuele
Katz Mikhail G.
author_facet Bottazzi Emanuele
Katz Mikhail G.
author_sort Bottazzi Emanuele
title Infinitesimals via Cauchy sequences: Refining the classical equivalence
title_short Infinitesimals via Cauchy sequences: Refining the classical equivalence
title_full Infinitesimals via Cauchy sequences: Refining the classical equivalence
title_fullStr Infinitesimals via Cauchy sequences: Refining the classical equivalence
title_full_unstemmed Infinitesimals via Cauchy sequences: Refining the classical equivalence
title_sort infinitesimals via cauchy sequences: refining the classical equivalence
publisher De Gruyter
publishDate 2021
url https://doaj.org/article/d13d18f012f6434e84d91c4e892b4564
work_keys_str_mv AT bottazziemanuele infinitesimalsviacauchysequencesrefiningtheclassicalequivalence
AT katzmikhailg infinitesimalsviacauchysequencesrefiningtheclassicalequivalence
_version_ 1718371630062764032