Computationally predicting clinical drug combination efficacy with cancer cell line screens and independent drug action
Computational models that can predict drug combination efficacy are often based on drug synergy. Here, the authors develop a different approach to computationally predict the efficacy of drug combinations using monotherapy data from high-throughput cancer cell line screens.
Guardado en:
Autores principales: | Alexander Ling, R. Stephanie Huang |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/d1fa96cd03394bc89c33eaee9b5d9687 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Community assessment to advance computational prediction of cancer drug combinations in a pharmacogenomic screen
por: Michael P. Menden, et al.
Publicado: (2019) -
Generation of a predictive melphalan resistance index by drug screen of B-cell cancer cell lines.
por: Martin Boegsted, et al.
Publicado: (2011) -
Network-based in silico drug efficacy screening
por: Emre Guney, et al.
Publicado: (2016) -
Drug ranking using machine learning systematically predicts the efficacy of anti-cancer drugs
por: Henry Gerdes, et al.
Publicado: (2021) -
Network-based prediction of drug combinations
por: Feixiong Cheng, et al.
Publicado: (2019)