Computationally predicting clinical drug combination efficacy with cancer cell line screens and independent drug action
Computational models that can predict drug combination efficacy are often based on drug synergy. Here, the authors develop a different approach to computationally predict the efficacy of drug combinations using monotherapy data from high-throughput cancer cell line screens.
Enregistré dans:
Auteurs principaux: | Alexander Ling, R. Stephanie Huang |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2020
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/d1fa96cd03394bc89c33eaee9b5d9687 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Community assessment to advance computational prediction of cancer drug combinations in a pharmacogenomic screen
par: Michael P. Menden, et autres
Publié: (2019) -
Generation of a predictive melphalan resistance index by drug screen of B-cell cancer cell lines.
par: Martin Boegsted, et autres
Publié: (2011) -
Network-based in silico drug efficacy screening
par: Emre Guney, et autres
Publié: (2016) -
Drug ranking using machine learning systematically predicts the efficacy of anti-cancer drugs
par: Henry Gerdes, et autres
Publié: (2021) -
Network-based prediction of drug combinations
par: Feixiong Cheng, et autres
Publié: (2019)