A Manifold Learning Perspective on Representation Learning: Learning Decoder and Representations without an Encoder
Autoencoders are commonly used in representation learning. They consist of an encoder and a decoder, which provide a straightforward method to map <i>n</i>-dimensional data in input space to a lower <i>m</i>-dimensional representation space and back. The decoder itself define...
Saved in:
Main Authors: | , |
---|---|
Format: | article |
Language: | EN |
Published: |
MDPI AG
2021
|
Subjects: | |
Online Access: | https://doaj.org/article/d20c216f39bc4836996f2afcc9ba9edc |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|