Unravelling the secrets of the resistance of GaN to strongly ionising radiation
Gallium nitride is a wide bandgap semiconductor which is generally expected to replace some silicon-based technologies, despite some of its properties still requiring further investigation. Here, using a two-temperature model coupled to molecular dynamics simulations, the authors investigate and pre...
Guardado en:
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/d2128366a2e14a899c290711efdc2058 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | Gallium nitride is a wide bandgap semiconductor which is generally expected to replace some silicon-based technologies, despite some of its properties still requiring further investigation. Here, using a two-temperature model coupled to molecular dynamics simulations, the authors investigate and predict the effects of strongly ionising radiation in gallium nitride, revealing the mechanism behind its unusual resistance to radiation. |
---|