Deep learning enables accurate clustering with batch effect removal in single-cell RNA-seq analysis

Increasingly large scRNA-seq datasets demand better and more scalable analysis tools. Here, the authors introduce a scalable unsupervised deep embedding algorithm that clusters scRNA-seq data by iteratively optimizing a clustering objective function and enables removal of batch effects.

Guardado en:
Detalles Bibliográficos
Autores principales: Xiangjie Li, Kui Wang, Yafei Lyu, Huize Pan, Jingxiao Zhang, Dwight Stambolian, Katalin Susztak, Muredach P. Reilly, Gang Hu, Mingyao Li
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2020
Materias:
Q
Acceso en línea:https://doaj.org/article/d25ce1857e63443bb60277874e79ad11
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!