An Experimental Study on State Representation Extraction for Vision-Based Deep Reinforcement Learning
Scaling end-to-end learning to control robots with vision inputs is a challenging problem in the field of deep reinforcement learning (DRL). While achieving remarkable success in complex sequential tasks, vision-based DRL remains extremely data-inefficient, especially when dealing with high-dimensio...
Guardado en:
Autores principales: | Junkai Ren, Yujun Zeng, Sihang Zhou, Yichuan Zhang |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/d3239a38c9224fd5889324606428bb69 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Practical Algorithmic Trading Using State Representation Learning and Imitative Reinforcement Learning
por: Deog-Yeong Park, et al.
Publicado: (2021) -
Applications of Multi-Agent Deep Reinforcement Learning: Models and Algorithms
por: Abdikarim Mohamed Ibrahim, et al.
Publicado: (2021) -
Reinforcement Learning Approaches to Optimal Market Making
por: Bruno Gašperov, et al.
Publicado: (2021) -
Optimizing Few-Shot Learning Based on Variational Autoencoders
por: Ruoqi Wei, et al.
Publicado: (2021) -
Long-Term Ship Position Prediction Using Automatic Identification System (AIS) Data and End-to-End Deep Learning
por: Ibadurrahman, et al.
Publicado: (2021)