A supervised learning framework for chromatin loop detection in genome-wide contact maps

Predicting chromatin loops from genome-wide interaction matrices such as Hi-C data provides insight into gene regulation events. Here, the authors present Peakachu, a Random Forest classification framework that predicts chromatin loops from genome-wide contact maps, and apply it to systematically pr...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Tarik J. Salameh, Xiaotao Wang, Fan Song, Bo Zhang, Sage M. Wright, Chachrit Khunsriraksakul, Yijun Ruan, Feng Yue
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2020
Materias:
Q
Acceso en línea:https://doaj.org/article/d358d96ed7504e06836b668c15d107b4
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Predicting chromatin loops from genome-wide interaction matrices such as Hi-C data provides insight into gene regulation events. Here, the authors present Peakachu, a Random Forest classification framework that predicts chromatin loops from genome-wide contact maps, and apply it to systematically predict chromatin loops in 56 Hi-C datasets, with results available at the 3D Genome Browser.