Network-Based Analysis to Identify Drivers of Metastatic Prostate Cancer Using GoNetic
Most known driver genes of metastatic prostate cancer are frequently mutated. To dig into the long tail of rarely mutated drivers, we performed network-based driver identification on the Hartwig Medical Foundation metastatic prostate cancer data set (HMF cohort). Hereto, we developed GoNetic, a meth...
Guardado en:
Autores principales: | Louise de Schaetzen van Brienen, Giles Miclotte, Maarten Larmuseau, Jimmy Van den Eynden, Kathleen Marchal |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/d39ae633b1bc40268809f76d24f6dd91 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Profile of Basal Cell Carcinoma Mutations and Copy Number Alterations - Focus on Gene-Associated Noncoding Variants
por: Paulina Maria Nawrocka, et al.
Publicado: (2021) -
Cabazitaxel in the treatment of metastatic castration-resistant prostate cancer
por: Nikolai A. Ognerubov
Publicado: (2021) -
A Network-Centric Framework for the Evaluation of Mutual Exclusivity Tests on Cancer Drivers
por: Rafsan Ahmed, et al.
Publicado: (2021) -
Marginal improvement in survival among patients diagnosed with metastatic prostate cancer in the second‐line antiandrogen therapy era
por: Isaac E. Kim, et al.
Publicado: (2021) -
An exploratory first‐in‐man study to investigate the pharmacokinetics and safety of liposomal dexamethasone at a 2‐ and 1‐week interval in patients with metastatic castration resistant prostate cancer
por: Josephina P. M. Vrouwe, et al.
Publicado: (2021)